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Abstract

A lensis a bidirectional program. When read from left to right, énstes an ordinary function that maps inputs to
outputs. When read from right to left, it denotes an “updedaglator” that takes an input together with an updated
output and produces a new input that reflects the update. Marignts of this idea have been explored in the
literature, but none deal fully witbrdereddata. If, for example, an update changes the order of a lisiemutput,

the items in the output list and the chunks of the input thategeted them can be misaligned, leading to lost or
corrupted data.

We attack this problem in the context of bidirectional tfansations over strings, the primordial ordered data
type. We first propose a collection of bidirectioséling lens combinatordased on familiar operations on regular
transducers (union, concatenation, Kleene-star) and avitjpe system based on regular expressions. We then
design a new semantic spacedttionary lensesenriching the lenses of Foster et al. (2007b) with suppart f
two additional combinators for marking “reorderable chsin&nd their keys. To demonstrate the effectiveness of
these primitives, we describe the design and implememtafi@oomerang, a full-blowbidirectional programming
languagewith dictionary lenses at its core. We have used Boomerabgitd transformers for complex real-world
data formats including the SwissProt genomic database.

We formalize the essential property resourcefulness-the correct use of keys to associate chunks in the input
and output—~by defining a refined semantic spacgualsi-oblivious lense$everal previously studied properties of
lenses turn out to have compact characterizations in tlisesp

1. Introduction

“The art of progress is to preserve order amid change
and to preserve change amid order”
—A N Whitehead

Most of the time, we use programs in just one direction, frapui to output. But sometimes, having computed
an output, we need to be able tipdatethis output and then “calculate backwards” to find a corragpwly
updated input. The problem of writing such bidirectionahsformations arises in a multitude of domains, including
data converters and synchronizers, parsers and prettgsipicklers and unpicklers, structure editors, coirgtra
maintainers for user interfaces, and, of course, in dathagere it is known as the view update problem. Our own



study of bidirectional transformations is motivated byithapplication in a generic synchronization framework,
called Harmony, where they are used to synchronize heteenges data formats against each other (Pierce et al.
2006; Foster et al. 2007a).

The naive way to write a bidirectional transformation is giynto write two separate functions in any language
you like and check (by hand) that they fit together in some gmaite sense—e.g., that composing them yields the
identity function. However, this approach is unsatisfyfagall but the simplest examples. For one thing, verifying
that the two functions fit together in this way requires tdte reasoning about their behaviors. Moreover, it creates
maintenance nightmare: both functions will embody thecstne that the input and output schemas have in common,
so changes to the schemas will require coordinated chaadmesh. (See the appendix for a concrete example.)

A better alternative is to design a notation in which botim$farmations can be described at the same time—i.e.,
a bidirectional programming languagén a bidirectional language, every expression, when ream feft to right,
denotes a function mapping inputs to outputs; when read fight to left, the same expression denotes a function
mapping an updated output together with an original inpw@trt@ppropriately updated version of the input. Not
only does this eliminate code duplication; it also elim@spaper-and-pencil proofs that the two transformations fit
together properly: we can design the language to guarantee i

Many different bidirectional languages have been proposetuding constraint maintainers (Meertens 1998),
pickler combinators (Kennedy 2004), embedding projectiaits (Benton 2005; Ramsey 2003), X/Inv (Hu et al.
2004), XSugar (Brabrand et al. 2007), biXid (Kawanaka anddya 2006), PADS (Fisher and Gruber 2005),
and bi-arrows (Alimarine et al. 2005). The design challefyeall these languages lies in striking a balance
between expressiveness and reliability—making strongim®es to programmers about the joint behavior of pairs
of transformations and the conditions under which they edelyg be used.

Lenses

The language described in this paper is an extension of ewiqus presentation on lenses (Foster et al. 2007b)—
calledbasic lensesiere! Among the bidirectional languages listed above, lensesiaigue in their emphasis on
strong guarantees on behavior and on compositional reagtetchniques for establishing those guarantees.

Formally, a basic lensmapping between a set of inputy“concrete structures”) and a set of outpdt§'abstract
structures”) comprises three functions

lgete C — A
lpute A —C —C
l.createc A — C

obeying the following laws for every € C anda € A:

l.put(l.getc) c=c (GETPUT)
l.get(l.putac) =a (PUTGET)
l.get(l.createa) = a (CREATEGET)

The set of basic lenses frofto A is writtenC' < A.

Thegetcomponent of a lens may, in general, discard some of thenrdton from the concrete structure while
computing the abstract structure. Tpet component therefore takes as arguments not only an updagstchet
structure but also the original concrete structure; it vesathe data from the abstract structure together with
information from the concrete structure that was discatofedhe get component, yielding an updated concrete

! Readers familiar with the original presentation will netisome minor differences. First we handle situations wherlement ofC’ must
be created from an element dfusing acreatefunction instead of enriching' with a special elemerf2 and usingout Second, as we are
not considering lenses defined by recursion, we take the apems of lenses to be total functions rather than definingdg withpartial
components and establishing totality later. Finally, weetthe behavioral laws as part of the fundamental definitfdmesic lenses, rather
than first defining bare structures of appropriate type aed #dding the laws—i.e., in the terminology of Foster et200{b), basic lenses
correspond tavell-behaved, total lenses



structure. Thecreatecomponent is likeput except that it only takes ad argument; it supplies defaults for the
information discarded bgetin situations where only the abstract structure is avaglabl

Every lens obeys three laws. The first stipulates thapthéunction must restore all of the information discarded
by thegetif its arguments are an abstract structure and a concreietste that generates the very same abstract
structure; the second and third demand thatpghtand createfunctions propagate all of the information in the
abstract structure back to the updated concrete strudibese laws are closely related to classical conditions on
view update translators in the database literature (seefetsal. (2007b) for a detailed comparison).

M otivations and Contributions

In previous work, we designed lenses for trees (Foster &0al7b) and for relations (Bohannon et al. 2006); in
this paper we address the special challenges that ariseavtiereddata is manipulated in bidirectional languages.
Our goals are both foundational and pragmatic. Founddtionee explore the correct treatment of ordered data,
embodied abstractly as a new semantic law stipulating begbut function must align pieces of the concrete and
abstract structures in a reasonable way, even when theaupatves a reordering. Pragmatically, we investigate
lenses on ordered data by developing a new language bassttanotions of chunks, keys, and dictionaries. To
ground our investigation, we work within the tractable aehstring transformations. Strings already expose many
fundamental issues concerning ordering, allowing us tp@eawith these issues without the complications of a
richer data model.

While primary focus is on exposing fundamental issues, wee faso tried to design our experimental lan-
guage, Boomerang, to be useful in practice. There is a lotrisfigsdata in the world—textual database formats
(iCalendar, vCard, BibTeX, CSV), structured documentsTéxg Wiki, Markdown, Textile), scientific data (Swis-
sProt, Genebank, FASTA), and simple XML formats (RSS, AJAata)l and microformats (JSON, YAML) whose
schemas are non-recursive—and it is often convenient tapulate this data directly, without first mapping it to
more structured representations. Since most programmeedraady familiar with regular languages, we hope that
a bidirectional language for strings built around regulpemations (i.e., finite state transducers) will have broad
appeal.

Our contributions can be summarized as follows:

1. We develop a set aftring lens combinatorsiith intuitive semantics and typing rules that ensure tmes laws,
all based on familiar regular operators (union, concatenaand Kleene-star).

2. We address a serious issue in bidirectional manipulaifoordered data—the need for lenses to be able to
match up chunks of data in the concrete and abstract staschyr key rather than by position, which we call
resourcefulness-by adding two more combinators and interpreting all the loimrators in an enriched semantic
space oflictionary lenses

3. We formalize a condition callequasi-obliviousnesand use it to study properties of dictionary lenses. Some
previously studied properties of basic lenses also haviecheaacterizations using this condition.

4. We sketch the design and implementatioBobmeranga full-blownbidirectional programming languageased
on dictionary lenses, and describe some programs we haltédoiiransforming real-world data structures such
as SwissProt.

String Lenses

To give a first taste of these ideas, let us consider a sim@epbe where the concrete structures are newline-
separated records, each with three comma-separated épl@senting the name, dates, and nationality of a classical
composer

"Jean Sibelius, 1865-1957, Finnish

Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English"

and the abstract structures include just names and ndtiesal



"Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, English"

Here is a string lens that implements this transformation:

let ALPHA = [A-Za-z ]+
let YEARS = [0-9]{4} . "-" . [0-9]1{4}
let comp = copy ALPHA . copy ", "

. del YEARS . del ", "

. copy ALPHA

let comps = copy "" | comp . (copy "\n" . comp)*

The first two lines define ordinary regular expressions fphabetical data and year ranges. We use standard POSIX
notation for character set§{-Za-z ] and [0-9]) and repetition€ and{4}).

The lens that processes a single composesi®; lists of composers are processedoyips. In thegetdirection,
these lenses can be read as ordinary string transducettgnwiri regular expression styleopy ALPHA matches
ALPHA in the concrete structure and copies it to the abstracttsieicandcopy ", " matches and copies a literal
comma-space, whil@el YEARS matche<EARS in the concrete structure but adds nothing to the abstnaattate.

The union (), concatenation.(), and iteration £) operators work as expected. Thus, et component okomp
matches an entry for a single composer, consisting of asatpshatching the regular expressighPHA, followed

by a comma and a space (all of which are copied to the outplidwied by a string matchingEARS and another
comma and space (which are not copied) and a ihBHA. Thegetof comps matches either a completely empty
concrete structure (which it copies to the output) or a nesvBeparated concatenation of entries, each of which is
processed byomp.

The put component okomps restores the dates positionally: the name and nationabiy thenth line in the
abstract structure are combined with the years fronmthdine in the concrete structure, using a default year range
to handle cases where the abstract structure has moreleneshie concrete one. We will see precisely how all this
works in Section 2; for now, the important point is that the component otomps operates by splitting both of its
arguments into lines and invoking tipeit component otomp on the first line from the abstract structure together
with the first line from the concrete structure, then the sdcline from the abstract structure together with the
second line from the concrete structure, etc. For some apdat.g., when entries have been edited and perhaps
added at the end of the abstract structure but the orderes hias not changed—this policy does a good job. For
example, if the update to the abstract structure replac#®iBs nationality with “British” and adds an entry for
Tansman, theutfunction combines the new abstract structure

"Jean Sibelius, Finnish
Aaron Copland, American

Benjamin Britten, British
Alexandre Tansman, Polish"

with the original concrete structure and yields

"Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, British
Alexandre Tansman, 0000-0000, Polish"

(the default year rang®00-0000 is generated by th&el lens incomp from the regular expressiofEARS).

Problemswith Order

On other examples, however, the behavior of fhisfunction is highly unsatisfactory. If the update to the adsit
string breaks the positional association between linehédoncrete and abstract strings, the output will be
mangled—e.g., when the update to the abstract string isrdergng, combining



"Jean Sibelius, Finnish
Benjamin Britten, English
Aaron Copland, American"

with the original concrete structure yields an output

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1910-1990, English
Aaron Copland, 1913-1976, American"

where the year data has been taken from the entry for Coplashthaerted into into the entry for Britten, and vice
versa.

This is a serious problem, and a pervasive one: it is trigh@benever a lens whogget function discards
information is iterated over an ordered list and the updatkd abstract list breaks the association between elements
in the concrete and abstract lists. It is a show-stopper forymof the applications we want to write.

What we want is for theut to align the entries in the concrete and abstract strings &tgmmg up lines with
identical name components. On the inputs above gisunction would produce

"Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1913-1976, English
Aaron Copland, 1910-1990, American"

but neither basic lenses nor any other existing bidireefitanguage provides the means to achieve this effect.

Dictionary L enses

Our solution is to enrich lenses with a simple mechanismrémkingprovenancgCui and Widom 2003; Buneman
et al. 2001, etc.). The idea is that the programmer shouldtifgechunksof the concrete string andkeeyfor each
chunk. These induce an association between chunks andspétee abstract string, and this association can be
used byputduring the translation of updates to find the chunk corredpmto each piece of the abstract, even if the
abstract pieces have been reordered. Operationally, wel @t ourput functions to use this association by parsing
the whole concrete string into a dictionary, where each @rahunk is stored under its key, and then making this
dictionary, rather than the string itself, available to the function. We call these enriched structudistionary
lenses

Here is a dictionary lens that gives us the desired behawidhE composers example:

let comp = key ALPHA . copy ", "

. del (YEARS . ", ")
. copy ALPHA
let comps = "" | <comp> . ("\n" . <comp>)*

The first change from the earlier version of this program @t tthe two occurrences afomp in comps are
marked with angle brackets, indicating that these subsegpras are the reorderable chunks of information. The
corresponding substring of the concrete structure at eamlir@ence (which is passed to thet of comp) is obtained

not positionally but by matching keys. The second changleasthe firstcopy at the beginning otomp has been
replaced by the special primitiveey. The lenskey ALPHA has the same copying behavioragy ALPHA, but it
additionally specifies that the matched substring is to leel @s the key of the chunk in which it appears—i.e., in
this case, that the key of each composer’s entry is their n@hig choice means that we can both reorder the entries
in the abstract structure and edit their nationalitiesgesitihe correspondence between chunks in the concrete and
abstract structures is based just on names. We do not gctigatiand that the key of each chunk be unique—i.e.,
these “keys” are not required to be keys in the strict da&sasse. If several pieces of the abstract structure have
the same key, they are matched by position.



Quasi-Obliviousness

For the composers example, the behavior of the new dictjdeas is clearly preferable to that of the original basic
lens: itsputfunction has the effect of translating a reordering on tretralot string into a corresponding reordering
on the concrete string, whereas thefunction of the original lens works by position and produa@sangled result.
We would like a characterization of this difference—i.eway of expressing the intuition that the second lens does
something good, while the first does not.

To this end, we define a semantic space of lenses calledi-oblivious lensed.et!/ be a lens iC' <= A and
let ~ be an equivalence relation @n We say that is a quasi-oblivious lens with respect+oif its put function
ignores differences between equivalent concrete arglgnent

We are primarily interested in lenses that are quasi-ahliwiwith respect to an equivalence relating concrete
strings up to reorderings of chunks. It should be clear thdittonary lens that operates on dictionaries in which
the relative order of concrete lines is forgotten will be sju@blivious with respect to such an equivalence, while the
analogous basic lens, which operates on lines positigrialiyot. Using the above condition gut, we can derive
intuitive properties for many such quasi-oblivious lers&sg., for the dictionary lens for composers above, we can
show that updates to the abstract list consisting of reorgemare translated by thptas corresponding reorderings
on the concrete list.

Lenses that are quasi-oblivious with respect to equivagther than reordering are also interesting. Indeed, we
can characterize some important special cases of baseslgigiviousandvery well behavedenses) in terms of
guasi-obliviousness.

Boomerang

Our theoretical development focuses on a small set of basibmators. Of course, writing large programs entirely
in terms of such low-level primitives would be tedious; wendldlo this. Instead, we have implemented a full-blown
programming language, called Boomerang, in which the coatbis are embedded in a functional language,
Algol-60. That is, a Boomerang program is a functional pamgover the base type “lens”; to apply it to string data,
we first evaluate the functional program to produce a lend,then apply this lens to the strings. This functional
infrastructure can be used to abstract out common pattargereric bidirectional libraries (e.g., for processing
XML structures) that make higher-level programming quitexenient.

Boomerang also comes equipped with a type checker thasitgas types and checks the conditions needed to
ensure that a dictionary lens satisfies the lens laws. Theuioamd codomain types for dictionary lenses are regular
languages, so the analysis performed by this checker isprenyse—a huge aid in writing correct lens programs.

Using Boomerang, we have developed several large lensgwdoessing a variety of data including vCard,
CSV, and XML address books, BibTeX and RIS bibliographiablases, LaTeX documents, iTunes libraries, and
databases of protein sequences represented in the ASG$Brot format and XML.

Outline

Section 2 introduces notation and formally defines the ketsiicg lenses used in the first example above. Syntax,
semantics, and typing rules for dictionary lenses are giv&ection 3. Section 4 defines the refined semantic space
of quasi-oblivious lenses. Sections 5 and 6 describe Bommgesind our experiences building lenses for real-world
data formats. Section 7 discusses related work. Sectios@itles extensions and ideas for future work.

2. Basic String Lenses

Before presenting dictionary lenses, let us warm up by ftiming the language for basic lenses from the first
example in the introduction. Lét be a fixed alphabet (e.g., ASCII). A language is a subset*ofMetavariables
u, v, w range over strings ik *, ande denotes the empty string. The concatenation of two stringsdv is written
u-v; concatenation is lifted to languagés and Ly in the obvious wayZL,-Ly = {u-v | u € Ly andv € La}. We
write L* to denote the iteration of: i.e., L* = U;’L‘;O L™ where L™ denotes the:-fold concatenation of. with



itself
L' ={e¢}andL' = L, 1> = L-L, ...

The typing rules for some lenses require that for every gtbielonging to the concatenation of two languages,
there be a unique way of splitting that string into two suhbgs belonging to the concatenated languages. Two
languaged.; and L, are unambiguously concatenable, writen' Lo, if for everyuy, vy in Ly andus, v in Lo
if ui-us = v1-v9 thenu; = vy anduy = ve. Similarly, a languagé. is unambiguously iterable, writteh'*, if for
everyuy, ..., Um, V1, - --,0n, € L, if uy--+--uy = v1-----v, thenm = n andu; = v; for everyi from 1 to n.

2.1 Fact: It is decidable whether two regular languadgsand L, are unambiguously concatenable and whether a
single languagé. is unambiguously iterable.

Proof sketch: Let M; andM; be DFAs acceptind,; andLs. Construct an NFAV,, for L- Lo using the standard
Thompson construction. An NFA is ambiguous iff there exists a string for which there are tigiinct paths
through V; ambiguity of NFAs can be decided Isguaring(Berstel et al. 2005, Prop. 4.3N is ambiguous iff
there is a path throughv x N that does not lie entirely on the diagonal. It is easy to shost £, and L- are
unambiguously concatenable iff;5 is unambiguous. Unambiguous iteration is similar. O

Regular expressions are generated by the grammar
R = u| RR | RIR | R*

wherew ranges over arbitrary strings (includiaj The notation] E] denotes the (non-empty) language described
by E € R. The functionchoose(E) picks an arbitrary element frofi].

With that notation in hand, we now define five combinators failding basic string lenses over regular
languages. Recall that we writec C' <= A whenl is a basic lens mapping between string€irand A. Each
basic lens expects to be applied to arguments in its donmalofain—it is nonsensical to do otherwise. In our
implementation, we perform a membership test on everygb@fore supplying it to a lens. (We do this check just
once, at the top level: internally, the typing rules guagarthat every sublens is provided with well-typed inputs.)

The simplest primitivecopy F/, copies every string belonging to (the language denotedtydm the concrete
structure to the abstract structure, and conversely iptitdirection. The components obpyare precisely defined
in the box below. The second primitive lem®nstE v v maps every string belonging 16 to a constant string.

Its put function restores its concrete argument. It also takes aggument a default belonging toF, which is
used bycreatewhen no concrete argument is available. Note togustsatisfies BTGET because its codomain is a
singleton set.

The inference rules should be read as the statements of Ieth@iaeach combinator is a basic lens at the given

type.

EcR
COpYFE € [F] < [F]

getc = c
putac =
createa = a

EcR u e X* v e [E]
constE u v € [E] <= {u}

getc = u
putac = ¢
Createa = v




Several lenses can be expressed as syntactic sugarcesisg

E—u € [E] <= {u}
E—wu = constE u (choose(E))
delE € [E] < {¢}
delE = E <€
insu € {e} <= {u}
iNnsu = e<u

They behave as follows? — w is like const but uses an arbitrary element®ffor create thegetfunction ofdel £
deletes a concrete string belongingHoand restores the deleted string in it direction;ins u inserts a fixed
stringu in the getdirection and deletes in the opposite direction.

The next three combinators build bigger lenses from smailteas using regular operators. Concatenation is
simplest:

C1-'Cy Aj- As
li € 01<:>A1 ly € CQ<:>A2
li:ls € C1-Cy < Ai-Ay

get(cl-cz) = (ll.get01>'(l2.get62)
put (al-ag) (01'02) = (ll.putal Cl)‘(lg.putag CQ)
create(a;-az) = (ly.createa;)-(lo.createas)

The notationc;-co used in the definition of concatenation assumes thaand c; are members of”; and Cs
respectively; we use this convention silently in the reshefpaper.

The typing rule for concatenation requires that the coecdimains and the abstract codomains each be
unambiguously concatenable. This condition is essertitaehsuring that the components of the lens are well-
defined functions and that the whole lens is well behaved.msxample of what would go wrong without these
conditions, consider the (ill-typed) lefg,,, defined aga < a | aa < aa)-(a <> b | aa < b) (we assume&”
binds tighter than [*, which is defined formally below). Thgetcomponent is not well defined since, according
to the above specificatiof,,;;.0etaaa = ab if we split aaa into a-aa andl,,;;;-getaaa = aab if we split it
into aa-a. This issue could be side-stepped using a fixed policy foostmy among multiple parses (e.g., with a
shortest match policy,,»;,.getaaa = ab). However, doing so would not always give us a lens thatfsedishe
lens laws; intuitively, just because one direction usevargimatch policy does not mean that the string it produces
will split the same way using the same policy in the otherdiom. Consideri,,,,, defined ask-k wherek is
(a <> bb|aa < a|b < b|ba« ba). Then using the shortest match policy we hayg,;.getaaa equals
(k.geta)-(k.getaa), which isbba, butly,e,,.putbba aaa equals(k.putb a)-(k.putba aa), which isbba. That is,
the GETPUT law fails. For these reasons, we require that each paih gthdCs and A; and A, be unambiguously
concatenable.

The Kleene-star combinator is similar:

Il € C= A (% Al*
* € C* < A*

get(ci---cp) = (l.getcy)---(l.getey)
put(al...an) (Cl"'cm) — C/l'“C;z
whered — l.puta; c; = {1,...,min(m,n)}
¢ l.createa; i€ {m+1,..,n}

create(ay---ap) = (l.createa,)---(l.createa,)




Note that thgoutcomponent of* calls theputof I on elements ofi andC' having the same index in their respective
lists. This is the root of the undesirable behavior in thenepi in the introductioR.Also note that it must handle
cases where the number 4§ is not equal to the number 6fs. Since the number oAs produced by thgetof [*
equals the number af's in its argument, the result of thpait function must have exactly as manjis as there are
As in its abstract string—otherwisepPGET would not hold. When there are mofés thanAs, the lens simply
ignores the extra’s. When there are mous, it must put them back into the concrete domain, but it hasonarete
argument to use. It uséxreateto process these extra pieces.

The final combinator forms the union of two lenses:

CinCy =10
h € Ch<= 4 lo € (<= A
l1|l2 € CLUCy = A1 U A,

ly.getec if ce C
getc = .
lo.gete ifce Cy
li.putac ifceCiNhac Ay
lo.putac ifceCoNa€e A
putac = .
ly.createa ifceCyNae Ar\ Ag
ly.createa ifce CiNae€ Ax\ A;
li.createa ifac Ay
createa = )
Ir.createa if a € Ay \Al

The typing rule forces”; and Cs to be disjoint. Like the ambiguity condition in the rule foorecatenation, this
condition is essential to ensure that the lens is well defifibd abstract codomains, however, may overlap. In the
put direction, when the abstract argument belongdia A, the union lens uses the concrete argument to select
a branch. In thereatefunction, since no concrete argument is available, it je&sly. (This choice is arbitrary,
but is not a limitation: to usé, by default, the programmer writés | ;. It does mean, though, that union is not
commutative.)

In some situations, theutfunction is invoked with an original concrete vievbelonging to the concrete domain
of the lens on one side of the union (gay and an updated abstract viembelonging to the abstract codomain of
the opposite lendq). Althoughc is not an element of’y, it may still have information that can be represented in
Cs. If such information was thrown away when computing ther@astview, then we would like for theutfunction
to reintegrate it, in some manner, with The original presentation of basic lenses (Foster et &78Dincluded a
notion of “fixup” functions—fromC’, to C; and vice versa—for extracting the common information angpinag it
into a concrete argument of appropriate type. Semantitiallp functions are exactly what is needed—one can show
that the conditional lens formulated using them is most g@nBut syntactically they are very unattractive, because
the programmer has to write down two additional functiongtmnconcrete domains! We believe that dictionary
lenses may offer a better alternative because, in theiclfash, they have the ability to transfer information from
one side of a union to another via the dictionary without reng explicit fixup functions (see Section 3). Thus, we
refrain from introducing fixup functions here and make thee, but arguably sub-optimal, choice of discarding
the concrete argument in these cases.

3. Dictionary Lenses

Now that we've seen basic string lenses, let us define lersssdieal more flexibly with ordering. We will
accomplish this by adding two new primitivesyatch (written with angle brackets in the concrete syntax of

2\We cannot, however, repair the problem just by fixing Klesta: the same issues come up with concatenation.



Boomerang) andey, and interpreting these new primitives and the primitivefireed in the previous section in
a refined space callatictionary lenses

The main difference between basic and dictionary lensésitgheirputcomponents operate on different types of
structures—strings and dictionaries respectively. Di@ry lenses also include two new componepésse which
is used to build a dictionary out of a concrete string, keglwhich is used to compute the key of data that goes into
a dictionary.

In a dictionary lens, the work of the basic lemst function is divided into two phases. In the first, the coneret
string is given tgarse which splits it into two parts: a collection of concrete oka organized as a dictionary and
askeletorrepresenting the parts of the string outside of the chumkihid second, thput function uses the abstract
string, the skeleton, and the dictionary to build an updatttrete string (and a new dictionary). These phases
occur in strict sequence: given a dictionary lénan abstract string, and a concrete string we firstparsec,
which yields a skeletor and dictionaryl; these are then passed, together witko I's put function, which walks
recursively over the structure efanda, threadingd through!’s sublenses and pulling chunks out as needed.

To streamline the exposition, we start with the definitiomlictionary lenses, which relies on several notions we
have not seen yet—skeleton sgtsthe set of keyds, dictionary type specifications, dictionary typesD (L), and
an infix operation—+ that appends dictionary values. These are defined below.

A dictionary lens fronC' to A with skeleton types and dictionary type specificatiahrhas components

lgete C — A

l.parsee C — S x D(L)
lkeye A — K

l.create ¢ A — D(L) — C x D(L)
lput e A— SxD(L) — C x D(L)

obeying the following behavioral laws:
s,d' = l.parsec de D(L)

GETPUT
Lput(l.gete) (s, (d ++d)) =c,d ( )
d = l.put d
& puta (s, d) (PUTGET)
l.getc=a
c,d = l.createa d
(CREATEGET)

l.getc=a

We write C' <% A for the set of dictionary lenses with this type.

Both createandput consume dictionaries. We thread dictionaries througls ¢althese functions in a functional
style that simulates a global, mutable dictionary, and rerentries as they are used, so that the next lookup of the
same key finds the (positionally) next chunk from the comcsgting. Theput function takes a skeleton argument,
whereas thereatefunction does not. The skeleton, when available, repregbmstoriginal concrete string with the
chunks removed and provides enough information to recacigtie original concrete string in cases whegerGuT
requires it.

To see how the components of a dictionary lens fit togethtauslsee how to build a basic lensom a dictionary
lens:

l.getc = l.getc
lputac = m(l.puta (I.parsec))
l.createa = m(l.createa {})

This definition embodies the strict phase separation betwaeseandputdiscussed above. It is easy to show that
the dictionary lens laws guarantee the original laws foidlemses built this way.

3In law GETPUT, the extra dictionaryl shows that all and only the chunks originating frerare used by thput function.



31 Theorem: If [ € C 25 Athenl € C « A.

Proof:
GETPUT: Letc € C'andd € D(L) with s,d = l.parsec anda = [.getc. We calculate as follows:

l.put(l.gete) c
71 (1.put (I.getc) (I.parsec)) by definition ofl.put

= m(l.puta (s,d)) by assumptions
= mi(e{}) by GETPUT for
= c by definition.

PUTGET: Leta € A andc € C with s, d = [.parsec. We calculate as follows:

l.get(l.puta c)
l.get(m(I.puta (I.parsec))) by definition ofl.put

(
= [.get(m(L.puta (s,d))) by assumption
= lLget(m(cd,d)) for somec, d’
= l.get(d) by definitionr
= a by PUTGET for I.

CREATEGET: Leta € A. We calculate as follows:

1.get(l.createa)

l.get(m(l.createa {})) by definition ofi.create
= lget(m(d,d)) for somec’, d’
= l.get(c) by definition,
= a by CREATEGET for I.

O

We now give the definitions deferred previously. We write: ¢ for the list with headh and tail¢, List(X) for
the set of lists ofX and, and; @ I; for the concatenation of lists andls. We write X x Y for the set of pairs
{(z,y) | » € X andy € Y}. We take the set of skeletogsto be the smallest set closed under these operations
that includes plain strings and a distinguished afdmvhich is used to mark the locations of chunks in skeletons.
Formally,S = (2, Sn, WhereS, = ¥* U {0} andS;11 = S; U (S; x S;) U List(S;). We definek, the set of
keys, to be justE* (richer structures are also possible; see Section 8).

As chunks may be nested within chunks (by nestingtlaéchcombinator), the type of dictionaries is recursive.
A dictionary is a total function from keys to lists of pairsgdah consisting of a skeleton and another dictionary.
Formally, the set of dictionaries is defined recursively loa structure of a list of sets of skeletohse List(P(S))
specifying the skeletons that may appear at each level)las/f

D)) = K—Al}
D(S: L) = K — List(S x D(L))

We write { } for the dictionary that maps evekyto the empty list. Let/ be a dictionaryk a key, andv a skeleton-
dictionary pair list of appropriate type. The update of diditary, writtend[k < v}, is defined as

n Jd(E) ifE #£Ek
d{k&”m)_{v if k' = k
We write {k; — v1,...,k, — v, } for {}[k1 < v1]--- [k, < v,]. The concatenation of two dictionariés andda,

written d; ++ da, is defined using list concatenation as folloWs; ++ dq)(k) = di(k) @ d2(k). It is easy to check
that this concatenation operation is associative.



3.2Lemma: Foralldy, ds,ds € D(L), (dl ++ dg) ++d3z = dy ++ (d2 ++ dg)

Proof: Letk ¢ K. Then

((dl-H—dQ -H—dg) k
= (di(k) @ds(k)) ads
di (k) @ (da(k) @ ds(
= (di ++ (dg ++d3))(k)

)
()
k)

O

Dictionaries are accessed using a partial funciiathup that takes a key and a dictionaryl as arguments. When
it finds a matching valudpokup returns the value found and the dictionary that remaing déketing that value.

e dlk—1] ifdk)=-e:l
lookup(k, d) = {undefined otherwise
We now reinterpret each combinator from the previous seea dictionary lens and give the definitions of the
new combinator&eyandmatch Thekeycombinator is nearly identical toopy, except that théeycomponent of
copyis a constant function (returnirgy, while thekeycomponent okeyreturns the abstract string.

EcR L € List(P(S))

CopyE € [E] £ [E]

getc =
parsec = ¢ {}
keya =
createad = a,d

puta (s,d) = a,d

3.3Lemma: copyFE € [E] FAIES 1E].

Proof:
GETPUT: Letc € [E] andd € D(L) with s,d’ = (copyFE).parsec. Thens = c andd’ = {} by the definition of
(copyE).parse We calculate as follows:

(copyE).put ((copyE).gete) (s, (d ++d))
= (copyE).putc (¢, ({} ++d))
= (copyE).putc (¢, d)
= c¢d.

PUTGET: Leta,s € [E] andd € D(L) with ¢,d’ = (copyE).puta (s,d). Thenc = a and(copy E).getc =
(copyFE).geta = a, as required.

CREATEGET: Leta,c € [E] andd € D(L) with ¢,d’ = (copyFE).createa d. Thenc = a and(copy F).getc =
(copyFE).geta = a, as required.

]



EcR L € List(P(S))
keyE € [E] L [E]

getc = c
parsec = ¢ {}
keya = a
createad = a,d

puta (s,d) = a,d

34 Lemma: keyE € [E] L [E].

Proof:
GETPuUT: Identical to the proof focopyE.
PUTGET: ldentical to the proof focopyFE.

CREATEGET: ldentical to the proof focopyFE.

The refined definition ofonstis also straightforward.

EcR u € X* v e [E] L e List(P(S))
constEuv € [E] 22 u)
getc = u
parsec = o{}
keya = €
createud = wv,d
putu (s,d) = s,d

35Lemma: constE u v € [E] <= {u}.

Proof:
GETPUT: Letc € [E] andd € D(L) with s,d’ = (constE u v).parsec. Thens = c andd’ = {} by the definition
of (constE u v).parse We calculate as follows:

(CONStE w v).put ((CONStE u v).gete) (s, (d ++ d))
= (constE u v).putu (¢, ({} +d))
= (constE u v).putu (c,d)
= ¢d.

PUTGET: Leta € {u} ands € [E] andd € D(L) with ¢,d’ = (constE u v).puta (s,d). Thena = u and
(constE u v).getc = u, as required.

CREATEGET: Leta € {u} andd € D(L) with ¢,d = (constE u v).createa d. Thena = wu and
(constE u v).getc = u, as required.

]

Concatenation is similar to string lenses, lbutate and put thread the dictionary through the corresponding
sublens functions.



1 € 01§1:7L>A1 C1'!CQ

lo € CQ<S2:7L>A2 A1~!A2

li:ly € C1-Cy S1<§%,LA1'A2

geter-co = (ly.getcy)-(l2.0eter)
parsecy -co = (81,82),dy ++ d2
wheres;, d; = [;.parsec;
keyal-ag = l1.keya1 . lg.keyag
createa;-as d = cC1-C2, d3
Whereci, di+1 = [;.createa; d;
puta1~ag ((81,82),d1) = Cl'CQ,dg

Whereci, dZ'Jrl = li.putai (SZ', dl)

36 Lemma: Iy-ly € Cy-Cy " E21 A, 4,

Pr oof:
GETPUT: Letc € C1-Cy andd € D(L) with s, d’ = (;-13).parsec.

SinceC;-'Cy, there is a unique; € C; andcy € Csy, such that;-co = ¢. By the definition of(l;1-12).parsewe
haves = (s1, s2) andd’ = d} ++ d;, wheres;, d; = l;.parsec; for i € {1,2}.

Similarly, by the definition of(l;-l5).getwe have(l;-l2).getc = a wherea = ay-ay anda; = l;.gete; for
i € {1,2}. Moreover, byAl-!Ag, the stringsu; € A; anday € A, are the unique elements of those sets whose
concatenation is.

We calculate as follows:

(ll-lg).put((ll-ZQ).getc) (S, (d/ ++ d))
= (li-lz).put(ar-az) ((s1,52), (d} ++dj ++d))
= (c+ch), ds
Wherec’l, do = ll.putal (81, (d/l ++ d/2 ++ d))
andc’2, ds = lg.putag (82, dg)

By the GETPUT property forl;, we haved, = ¢; anddy = d), ++ d. Similarly, by the GETPUT property forl, we
haved, = cp andds = d. Putting all these facts together, we hdwed,), ds = ¢, d, as required.

PUTGET: Leta € A;-Ay ands = (s1,s2) € S1 x Se andd; € D(L). SinceA;-' A, there exist unique elements
a; € A anday € As such thata;-as) = a.

Let ¢;,diy1 = l;.puta; (s, d;) fori € {1,2}. By C1-'Cy, the stringse; € C; andey € C, are the unique
elements of those sets whose concatenation is:).

By the RUTGET property forl; andls, we havel;.getc; = a; for i € {1,2}. By the definition of(;-l2).put, we
have(l;-l2).puta (s,d;) = (c1-¢c2), ds. Using these facts, we calculate as follows:

(li-l2).get(c1-c2)
= (ll.getcl)-(lg.get@)
= aj-as
= a

as required.

CREATEGET: Leta € A;-As andd; € D. SinceA;-'A,, there exist unique elemenis € A; andas € A, such
that(al-ag) =a

Letc;, d;+1 = l;.createq; d; fori € {1,2}. By C1-'Cy, the strings:; € C; ande, € Cs, are the unique elements
of those sets whose concatenatiofxiscs).



By the CREATEGET property forl; andly, we havd,.gete; = a; fori € {1, 2}. By the definition of(/;-l2).create
we have(l;-ly).createa s di = (c;-¢2), ds. Using these facts, we calculate as follows:

(l1-l2).9et(c1-c2)
= (ll .getcl)~(l2.geth)
ai1-ag
= 0/7

as required. U

Lens concatenation is associative, modulo coercion tabasses: even though the skeleton structure of a lens
differentiateql;-l2)-I5 from l1-(l2-13), we have(l;-l3)-ls = 11-(I2-13).
SlX(52X53), (S1><52)><53,L

— —

3.7 Fact: If ll‘(lg'lg) eC L A, then(ll~lg)-l3 eC A andll‘(lg'lg) = (ll'lg)-lg.

Moreover, our combinators do not take advantage of thetyabalidistinguishS; x (S3 x S3) from (S7 x S2) x Ss.
Thus, we implicitly associate lens concatenation (and tmeesponding set-theoretic operations) to the left.
To illustrate the definitions we have seen so far, considefdahowing dictionary lens:

Il = keyx* - dely* - copy(z*-$)
with g € x*.y*.z*.§ Sl x*.z*.§
and S =x* x y* x z*.§.

(We implicitly coerce a regular expression to its corresping language in these examples.) Tagsefunction of
lg breaks apart a string according to the structure of the evaclomain:

ls.parsexxyz$ = (xx,y,2$), {} + {} + {}

(The dictionary is empty because none of the sublenses esetithoperator.) Thé&eyfunction returns thex. . .x
prefix of an abstract string. Thieyfunction tells us, for example, that the concrete stirgzz$ has the same key
as the abstract stringzz$, because

ls.key(lg.getxxyzz$) = lg.keyxxzz$ = xx = [g.keyxxz$.

The other components of this lens induce the same funct®irsthe basic lens semantics.

The iteration combinator is analogous to the concatenatfmerator. Itsparsefunction builds a concatenated
dictionary and itsput and create functions thread their dictionary argument (from left tghi) through the
corresponding sublens functions.

I e &5 A4 o A

e CO* List(S),L A%
getey---cp = (l;.9eter)---(l.getey)
parsec;---cp, = [81,.eey Sp), d1 -4+ dp,
wheres;, d; = l.parsec;
keyai---ay = l.keya; ---1.keya,
createa;---a, dj =(c1-Cp),dnt1

wherec;, d;+1 = l.createa; d;
puta---ap ([$1,...y Sm),d1) = (c1++-¢pn), dp+1
l.putai (Si,di)

i€ {l,...,min(m,n)}
l.createq; d;

ie{m+1,..,n}

Whereci, di+1 =




38 Lemma: I* € O "EEL g
Proof:
GETPUT: SinceC'*, for all ¢ € C*, there is a unique and sequence,, .. ., ¢,, such that; ---¢, = ¢ and each
¢; € C. In this proof, we will use the notatiofen(c) for this unique value: and the notatior|:] for the unique
substringe;.

Claim: For allc € C*,d € D(L), if n = len(c) ands;,d; = l.parsec]i] fori € {1,...,n}, then for all
jed{l,...,n},

(I*).put ((1*).getc) ([s1, .-, Snl, (d1 +++ 4+ dp ++ d)) = ¢[1]---c[j] - ¢, d

where

c = mi((1%).put ((1*).get(c[j + 1]--c[n])) ([sj41, - 50, (djr1 +++ -+ diy ++ d))).
First note that this claim implies &PuT (letting j = n). Now we prove this claim by induction dan(c).
Case: Casen = len(c) = 0.

Then
(I%).put ((I*).gete) ([s1, ..., Sn), (d1 ++++- 4+ dp, ++ d))
= (I*).pute ([],d)
= €,d
and
m ((1).put ((%).get(clj + 1]---c[n])) ([sj+1, - sn, (dj41 ++-+ 4+ dn ++ d)))
= m((*).put((i*).gete) ([],d))
= m((I*).pute (], d))
m1(€,d)
as required.

Case: Casen = len(c) > 0.
Then, lettingj be an arbitrary value frori1, ...n},

(I*).put ((1*).get(c[1]---c[n))) ([s1,---s S, (d1 ++++ 4+ dp, ++ d))
= (I*).put(l.getc[l] - ((1*).get(c[2]---c[n]))) ([s1,---s Sn], (d1 ++++-++ dy ++d))
(by the definition of(i*).gef
= c1 - (I%).put((1*).get(c[2]---c[n])) ([s2, ..., Sn], db)
wherecy, d, = l.put (l.getc[1]) (s1, (dy ++++++ dyp ++ d))
(by the definition of(/*).putand by A'*)
= 1] (1%)-put ((1%).get(c[2]-c[n])) ([52, . ul, (do ++-++ dy ++d))
(by the law GETPUT onl)
= c[1]- (c[2]+clf]) - ¢, d
whered’ = 71 ((I*).put ((1*).get(c[j + 1]---c[n])) ([Sj+1, s Sn)s (dj1 4+ 4+ dp ++ d)))
(by the IH),

as required.



PUTGET: Leta = a;---a, € A* ands = sy---s,, € List(S), witha; € Aands; € S. Letd; € D(L). For every

ke {1,...,n} define

Cydp41 = {

In either case we havegetc, = ax, by PUTGET if £ < m and by QRREATEGETif k > m.

Z.putak (Sk,dk> if k<m
l.createay, dy, if k> m.

Using these facts and the definition(éf).get we calculate as follows:

as required.

CREATEGET: Follows from the previous case, €¥).createa d = (I*).puta ({}, d).

(I*).get(cr---cn)
(l.getey)---(l.getey)
al .. .an

a)

O

The most interesting new combinatorrisatch Its getcomponent passes off control to the sublénshe put
component matches up its abstract argument with a corrdsmpgpitem in the dictionary and supplies both to the

putfunction ofi.

getc
parsec
keya

createa d

puta (O, d)

I ¢ 0254

0 e otZ&EF Yy

l.getc
O, {l.key(l.getc) — [l.parsec]|}
l.keya
mi(l.puta(se, dy)), d

if (8q,dq),d = lookup(l.keya,d)
mi(l.createa {}),d

if lookup(l.keya, d) undefined
(m1(l.puta (sq,dy)),d

if (sq,dq),d = lookup(l.keya, d)
m1(l.createa {}),d

if lookup(l.keya, d) undefined

We prove that this combinator is a dictionary lens at the tgescribed by its typing rule, after stating a key

lemma about thévokup(-, -) function.

39Lemma: Letd € Dg..;, k€ K,e € S x D(L). Then

Proof: Since

lookup(k, {k — [e]} ++d) = e, d.



we have
lookup (k,{k — [e]} ++ d)

e, ({k — le]} ++ d)[k — d(k)]
e,d.

310Lemma: (I) € C A.

Proof:
GETPUT: Letc € C andd € D(L) ands,d’ = ({I)).parsec. By the definition of({l)).parsewe haves = [J and
d = {l.key(l.getc) — [(s.,d.)]} wheres,, d. = l.parsec. By Lemma 3.9 we have

lookup(l.key(l.getc), {l.key(l.getc) — [(s¢, dc)]} ++ d) = (Se¢, de), d
We then may calculate

())-put (((1)).getc) (O, ({L.key(l.getc) — [(sc, dc)]} ++ d))
(1y).put (I.gete) (O, ({I.key(l.getc) — [(se,de)]} ++d))
= m(l.put(l.getc) (s¢,de)),d
(by the equation above)
= mc,{}).d
(by GETPUT for )
= ¢, d

—~

Noting that((l)).parsec = (O, {l.key(l.getc) — [l.parsec]}), this proves GTPUT.
PUTGET: Leta € Aands = O andd € D(L) with ¢ = 71 (((l)).puta s d). We analyze two cases.
Case: lookup(a,d) = (s, dy),d"
Then by the definition of(l)).putwe havec = 7 (I.puta (s, di)). We then calculate
((1)).getc
= l.getc
= a
The last line follows by the BTGET property forl.
Case: lookup(a,d) undefined:
Then by the definition of(/)).putwe havec = 7, (l.createa {}). We then calculate
((1)).getc
= l.getc

= a
CREATEGET: Since((l)).createa d = (({I)).puta O d, the argument is identical to the proof o PGET.
]

To illustrate the operation @hatch consider the lendg)*. It has the samgetbehavior agg*, but itsputfunction
restores thgs to each chunk using the association induced by keys rédt@eibly position. Let us calculate the result
produced by the following application of the derivedt function:

(Ig)*.putxxzzz$x$ xyz$xxyyzz$



Here, the update to the abstract string has swapped the afrtte chunks and changed the numbegsfin each
chunk. Theparsefunction produces a dictionary structure that associdtesgarse of) each chunk to its key:

(Ig)*.parsexyz$xxyyzz$

B % [((x,y.25), {})]
- [D’D}’{ xx v [((xx, yy. 2285). {}) }

Each step invokes thaut of the match lens, which locates a concrete chunk from thediary and invokes thput
of lg. The final result illustrates the “resourcefulness” of tgiss:

<l$> Pputxxzzz$x$ xyz$xxyyzz$ = xxyyzzz9$xy$
By contrast, th@gutcomponent of the basic leig® is not resourceful—it restores thys to each chunk by position:
ls* . putxxzzz$x$ xyz$xxyyzz$ = xxyzzz3xyy$

The final operator forms the union of two dictionary lenses:

L e o 2k 4,

l € Cy 2% 4,

CiNnCy=0 S1NSy=10
l1‘l2 € 01UCQSl<U:%S7LA1UA2

l1.gete ifce C

getc {12 getc if c e Oy
arse ly.parsec ifce Cy
P ¢ lo.parsec if c e Oy

l1. keya ifa € Ay

keya {lz keya if a € A2\ A
createa d — ly.createad ifac Ay
“% T \ly.createa d if a e Ao\ Ay

la.puta (s,d) ifa,s € AaxSy
li.createa d if a,s € (A1\A2) xS

li.puta (s,d) ifa,s € A1 xS
(s,d) =
lo.createa d if a,s € (A2\A1)x Sy

311 Lemma: [; | Iy € (Cl U CQ) (Slu<:SQ>)7L (A1 U Ag).
Proof:
GETPUT: Letc € C1 UCyandd € D(L) with s,d’ = (I; | l2).parsec. We analyze two cases.

Case: Casec € Cy:
Then(l; | ly).parsec = [;.parsec and therefore € S;. We calculate as follows:

(ll ’ lg).DUt((ll ‘ lg).getc) (S, (d/ 4+ d))
(11 | I3).put(l1.gete) (s, (d' +d))
l1.put(ly.gete) (s, (d ++d))

(sinces € S; andly.getc € Ay)
= ¢, d

The last line follows from the &TPUT property forl;.



Case: Casec € (.
Symmetric to the previous case.
PUTGET: Leta € (A; U Az) ands € (S; U S2) andd € D(L). We analyze four subcases.
Case: Caseu € A; ands € S
We have
(ll ‘ 12).get(771((l1 ‘ lg).puta S d))
= (l1 | l2).get(m (l1.puta (s,d)))
(sincea € A1 ands € S4)
= ll.get(m(ll.puta (S, d)))
(sinceri(ly.puta (s,d)) € Cy)
= a

The last line follows from the BTGET property forl;.
Case: Casen € A; ands € Ss:

Symmetric to the previous case.

Case: Casen € A; \ Ay ands € Ss:

We have
(I | l2).get(mi((lh | l2).puta s d))
= (l1]l2).get(m(l;.createa d))
(sincea € A; \ Az ands € S9)
= [y.get(m(l;.createa d))
(sincem (I;.createa d) € C1)
= a

The last line follows from the EATEGET property forl; .

Case: Caseu € A2\ A; ands € Si:

Symmetric to the previous case.

CREATEGET: Leta € (4; U A2) andd € D(L). We analyze two subcases.
Case: Casen € A;:

We have
(11 | 12).9et(m1((l1 | l2).createa d))
= (I3 | I2).get(m1(y.createa d))
(sincea € A;)
= [y.get(m (l;.createa d))
(sincer(ly.createa d) € C)
= a

The last line follows from the EATEGET property forl;.
Case: Caseu € Ay \ Ay
Symmetric to the previous case.
O

This definition is analogous to the union operator for basinglenses. Because tpatfunction takes a skeleton
and dictionary rather than a concrete string (as the bassplat does), the last two cases select a branch using the
skeleton value. The typing rule ensures that skeleton dwrazie disjoint so that this choice is well-defined. The
union combinator is associative, but not commutative (ierdame reason that the basic lens is not).



One interesting difference from the basic lens is thatctleatefunction takes a dictionary argument, which can
be used to transfer information from one branch to the offiee. following example illustrates why this is useful.
Definelgs = (Ig) | (I5)-(lg). The typing rules give us the following facts:

0,0 ,[S
l$$ S EC ‘ Ec-EC { (<:))>}[ ] EA | EA'EA,
where Ec = x*y*z*§ Eyp = x*z*$§
S = x*xy*xz*§.

Now considerc;, co € E¢ anday,as € E4, Wherea; = lg.getc;. We havelgg.getcei-co = aj-ae. A natural way

for the put function to reflect an update afi-a> to as on the concrete string would be to produgeas the result.
However, since the update involves crossing from one brahtife union to the other, the basic lens version cannot
achieve this behavior—crossing branches always triggereatewith defaults. For example, with; = xyz$,

co = xxyyzz$, a1 = xz$, anday, = xxzz$, we have

(Is | Ig-lg).put xxzz$ xyz$xxyyzz$ = xx22$.

The dictionary lens version, however, is capable of cagfiormation from the concrete string via its dictionary,
even when the update changes which branch is selected. Ganieexample, we have

lgg.puUt xxzz$ xyz$xxyyz2$ = xxXyy22$,

as we might have hoped.
The union combinator is naturally associative.

312Fact: For alll;y ¢ 4 <51:7L> Ay, Iy € Oy <S2:’L> Ao, andlg e Cs <SSZ7L> Az we have(ll | lz) | l3 €

CiUCy,UCy T2 Ay Ay U Agifandonly ifly | (I | 1s) € C1 UGy U Gy P25 40U A, U A,
Moreover,(l1 | l2) | I3 =11 | (l2 | I3).

4. Quasi-Obliviousness

As the examples above demonstrate, dictionary lenses oaritten to work well in situations where the updates to
abstract strings involve reordering. In particular, thetidhary lens version of the composers lens in the intrddact
behaves well with respect to reordering, while the origledic lens version does not. In this section, we develop
a refinement of the semantic space of basic lenses that mag&esemparisons precise. We first define a space
of quasi-oblivioudenses and show how it can be used to derive intuitive prigseof lenses operating on ordered
data. We then show how it can be used more generally to sulscofaracterize two important special cases of
basic lenses—oblivious and very well behaved lenses.

Quasi-obliviousness is an extensional property of lengas;-a property of the way they transform entire abstract
and concrete structures. When discussing it, there is nd teenention internal structures like skeletons and
dictionaries. We therefore return in this section to thepténvocabulary of basic lenses, keeping in mind that
a dictionary leng can be converted into a basic ldrss described in Section 3.

Let/ be a basic lens fror@' to A and let~ be an equivalence relation ¢h Then! is quasi-obliviouswvith respect
to ~ if it obeys the following law for every, ¢ € C anda € A:

cr~

(EQuIVPuUT)

l.puta c = l.puta ¢

Note that the law has equality rather thanin the conclusion; this is because thet must propagate all of the
information contained im to satisfy RITGET. In particular, the order of chunks in the result of thetis forced by
their order ina.

Like the basic lens laws, @IVPUT is a simple condition that guides the design of lenses byifsjireg what
effect they must have in specific cases where the correctvlgha clear. One way to understand its effect is



to notice how it extends the range of situations to which tlERUT law applies—&TPUT only constrains the
behavior of theout on the unique abstract string generated from a concretgdtsiget with EQUIVPUT, it must
have the same behavior on the entire equivalence class.

Here is an example demonstrating howEv PUT and GETPUT can be used together to derive an useful property
of the put component of a lens, without any additional knowledge of lpawoperates. LetC and A be regular
languages and suppose that we can identificthenksof every string inC' and thekeyof each chunk. For example,
in the composers lens, the chunks are the lines and the keylseanames of the composers. These chunks and keys
induce an equivalence relation 6hwhere two strings: and¢’ are equivalent if they can be obtained from each
other by akey-respecting reorderingf chunks—i.e., by repeatedly swapping chunks such thaithaéve ordering
of chunks with the same key is preserved. Writdor this equivalence relation. Now létbe a quasi-oblivious
lens with respect te- and suppose that the notions of chunks and key€'@me carried by thgetfunction to A
in a natural way, and that every key-respecting reordering @an be generated by applying tgetfunction to a
correspondingly reordered stringdh (This is the case with our dictionary lens in the composange: chunks in
the abstract codomain are lines, the composer names asrywddy thegetfunction, and the order of the abstract
lines after agetis the same as the order of the lines in the concrete struptoasider an arbitrary concrete string
¢, an abstract string = getc, and an updated abstract strimgthat is obtained by reordering chunksdnLet us
calculate the result of applyingutto «’ andc. By the above hypothesis, sinaéwas obtained by reordering the
chunks ina, it is equal to thegetof ¢’ for somec’ obtained frome by the corresponding reordering of chunks. By
the GETPUT law, applying theput function toa’ andc’ is ¢; by EQuIVPUT, applying theput function toa’ andc
also yieldsc’. Thus, quasi-obliviousness lets us derive an intuitiveltethe put function translates reorderings of
chunks in the abstract string as corresponding reordedngise concrete string.

The EQuUIVPUT law is useful both as a constraint on the design of lens priest(in particular, dictionary
lenses are designed with this principle in mind, for an egjeivce based on reordering chunks) and as a guide
for developing intuitions. Quasi-obliviousness does hotyever, provide a complete specification of the correct
handling of ordering in bidirectional languages. For exlmip does not say what happens when the update to the
abstract string deletes chunks or edits the value of a kegapture such cases, one could formulate a condition
stipulating that theputfunction must align chunks by key. Specifying this conditibowever, requires talking about
the sublens that operates on the chunks, which implies acymtepresentation of lenses analogous to dictionary
lenses. We thus prefer to only consider the extensionaldegn though it provides guarantees in fewer situations.

By design, each dictionary lens is quasi-oblivious withpexs to an equivalence relation that can be read off from
its syntax. The equivalence identifies strings up to kepeetng reorderings of chunks, where chunks are denoted
by the occurrences of angle brackets, and keys by the se@awh chunk marked using tkey combinator. To see
that every dictionary lens is quasi-oblivious with respiecthis equivalence, observe thadrsemaps strings that
are equivalent in this sense to identical skeletons anébdities, and recall that thaut function for a dictionary
lens (when viewed as a basic lens) wraps an invocatiggacde and ofput, which operates on this skeleton and
dictionary directly. It follows thaput behaves the same on equivalent concrete strings.

Returning to the composers example, we can see that why #iielbas is bad and the dictionary lens is good:
the equivalence the programmer had in mindoth versions was the one that can be read off from the second
one—every line is a chunk, and the relative order of linedwifferent names should not affect how dates are
restored by theut function. The first version of the lens, which operates pasétly, is not quasi-oblivious with
respect to this equivalence.

So far, we have focused on equivalence relations which aredapecting reorderings of chunks. More generally,
we can consider arbitrary equivalencesnn the rest of this section, we investigate some propeafi¢isis more
general view of quasi-oblivious lenses.

For a given basic lenj there are, in general, many equivalence relatisnsuch that/ is an quasi-oblivious
lens with respect te-. We write Cl(~) for the set of equivalence classes (i.e., subsets of theretendomain) of
~. Every lengl is trivially quasi-oblivious with respect to equality, tfieest equivalence relation afi, and the



relation~ ., defined as the coarsest equivalence for whigdttisfies BUIVPUT (c~nac iff Va. puta ¢ = puta ).
Between equality and the coarsest equivalence, there icelaf equivalence relations.

Given an equivalence relation, every concrete elemardy be characterized by the data preserved in the abstract
codomain and the rest of the data shared by every other vidheatquivalence class containingThat is, given
C; € Cl(~) and an abstract view, there is at most one viewsuch that: € C; andi.getc = a. Conversely, if two
different concrete views map to the samehen they must belong to different equivalence classes.

In the original lens paper (Foster et al. 2007b), two spedtésses of lenses are discussed. A leasC' <— A
is calledobliviousif its put function ignores its concrete argument completely. A leissvery well behavedf the
effect of twoputs in sequence just has the effect of the second—ikeputa (I.puta’ ¢) = l.puta cfor everya, a/,
andc. (Very well behavedness is a strong condition and impogiag all lenses would prevent writing many useful
transformations. For example, note that neither varianhefcomposers lens is very well behaved: if we remove
a composer and add the same composer back immediatelythtdrirth and death dates will be the default ones
instead of the original ones. This may be seen as unfortubat¢he alternative is disallowing deletions!)

Interestingly, both of these conditions can be formulateterms of~,... A lens! is oblivious iff the coarsest
relation ~ ., satisfying EQUIVPUT is the total relation onC. Moreover,! is very well behaved iffivC; <
Cl(~ma)- l.get C; = A. This condition puts the abstract codomain in a bijectiothveach equivalence class of
~ and forces the operation of thput function to use the information in the abstract and concsétectures as
follows: the concrete structure identifies an equivaletasst’;; the information contained in the abstract structure
determines an element 6f. This turns out also to be equivalent to the classical natioview update translation
under “constant complement” (Bancilhon and Spyratos 1981)

5. Boomerang

Programming with combinators alone is low-level and tedidw make lens programing more convenient, we have
implemented a high-level programming language caledmerangpn top of our core primitives.

Boomerang’s architecture is simple: dictionary lens coratirs are embedded in a simply typed functional
language (we use the syntactic conventions of OCaml) budt the base typestring, regexp, andlens. The
language has all of the usual constructs: functions anddefinitions? as well as constants for using dictionary
lenses with the interface of a basic lens (as described i0BeR):

get : lens -> string -> string
put : lens -> string -> string -> string
create : lens -> string -> string

Evaluation in Boomerang is logically divided into two lesgh the style of Algol 60. At the first level, expressions
are evaluated using the standard strategy of a call-byev&lcalculus. This, in turn, may trigger the assembly
(and type checking!) of a new dictionary lens value. The tiore representation of a dictionary lens value is a
record of functions (representing tiget parse key, create andput components) and several finite-state automata
(representing the concrete, abstract, skeleton, anebdany components of the type); when a lens is built, the type
checker checks the conditions mentioned in the typing nusésy operations on these automata.

Using libraries and user-defined functions, it is possiblagsemble large combinator programs quite rapidly.
For example, the following user-defined function encapsslthe low-level details of escaping characters in XML.
It takes a regular expressiaxcl of excluded characters, and yields a lens mapping betweeramad escaped
PCDATA characters:

let xml_esc (excl:regexp) =
copy (["&<>\n] - excl)
| Il>|l <=> "&gt; n
| |l<l| <_> ’l&lt; n
| "y <=> n&amp; n

4 Although it is semantically straightforward to define lem&g recursion (see Foster et al. (2007b)), Boomerang ddesipport recursive
definitions as it would then be possible to define lenses vattiext-free types.



(Whenzxml_esc is applied, the value passed fetcl typically contains the “separators” of fields in the format;
these are used by the type checker, e.g., to verify unambgiteration.)

Similarly, the next two functions handle the details of mesing atomic values and entire fields in BibTeX
and RIS-formatted bibliographic databases. They are dkfim@ context wherars, quot_str, brac_str, and
bare_str are bound to the lenses used to process whitespace, quiited sstrings enclosed in curly braces, and
bare strings respectively.

let val (1d:string) (r:regexp) (rd:string) =

del (ws . "=" . ws . 1d) .
copy r .
del (rd . ws . "," . ws . "\n")

let field (bibtex:string) (ris:string) =
let quot_val = val "\"" quot_str "\"" in
let brac_val = val "{" brac_str "}" in
let bare_val = val "" bare_str "" in
let any_val = quot_val | brac_val | bare_val in
ws . bibtex <-> ris . any_val . ins "\n"

Theval function is used to tidy BibTeX values; when it is applied tiefh delimiter stringld, a regular expression
describing the value, and a right delimiter stringd, it produces a dictionary lens that strips out tk& ¢haracter,
whitespace, and delimiters. Thi@eld function takes as arguments strings representing the nbmBibTeX field
(e.g.title) and the corresponding RIS field1) and produces a dictionary lens that maps between entireddep
pairs in each format.

The most significant challenges in implementing Boomeramgecfrom the heavy use of regular expressions in
its type system. Since the types of dictionary lenses im/obgular languages, Boomerang’s type checker needs
to be able to decide equivalence, inclusion, and emptinessgalar languages, which are all standard. However,
standard automata libraries do not provide operations éordihg unambiguous concatenation and iteration, so
we implemented a custom automata library for Boomerang.librtary uses well-known technigues to optimize
the representation of transition relations, and to reamaeveral fast paths in automata constructions. Even with
these optimizations, as several operations use produstraations, the memory requirements can be significant.
In our experience, performance is good enough for examglesatistic size, but we plan to investigate further
optimizations in the future.

Because the type analysis performed by the dictionary gps thecker is so precise, many subtle errors—
overlapping unions, ambiguous concatenations, etc.—etextbd early. Boomerang supports explicit programmer
annotations of dictionary lens types, written in the usual/vaslet e : (C <-> A). It also has mechanisms
for printing out inferred types and generating countergxaswhen type checking fails. We have found all these
features incredibly helpful for writing, testing, and delging large lens progrants.

6. Experience

We have built Boomerang lenses for a variety of real-worldnfats, including an address book lens that maps
between vCard, CSV, and XML; alens that maps BibTeX and Rifdgjraphic databases; and lenses for calculating
simple ASCII views of LaTeX documents and iTunes librariepresented in XML as Apple Plists. Our largest
Boomerang program converts between protein sequencesgatatepresented in ASCII using the SwissProt format
and XML documents conforming to the UniProtKB schema. Fanegle, the following snippet of a SwissProt
entry

0S  Solanum melongena (Eggplant) (Aubergine).

0C Eukaryota; Viridiplantae.
0X NCBI_TaxID=4111;

5 And small ones! All the lenses and examples typeset in a tifgviont in this document were checked and run within theferang
system.



is mapped to a corresponding UniProtKB XML value:

<name type="scientific">Solanum melongena</name>
<name type="common">Eggplant</name>
<name type="synonym">Aubergine</name>
<dbReference type="NCBI Taxonomy" key="1" id="4111"/>
<lineage>
<taxon>Eukaryota</taxon>
<taxon>Viridiplantae</taxon>
</lineage>

Like many textual database formats, SwissProt databasdis@r of entries consisting of tagged lines; our lens
follows this structure. Entries are processed bynfachcombinator as distinct chunks, so that the information
discarded by thget(e.g., metadata about each entry’s creation date) can toegd<sorrectly when updates involve
reorderings. The identifier line provides a natural key.edtines are processed using lenses specifically written
for their data (of course, we factor out common code whenibleds Most of these consist of simple filtering
and reformatting (and swapping—see Section 8), and areftirer straightforward to write as dictionary lens
combinators.

Interestingly, as we were developing this lens, the Boongetgpe checker uncovered a subtle ambiguity in one
of the lines that stems from the use of bothi and “;” as separators. Some implicit conventions not mentioned in
the specification avoid this ambiguity in practice (and weenable to revise our code to reflect these conventions).
The precision of Boomerang's type system makes it a verggfetool for debugging specifications!

7. Related Work

Basic lenses were the starting point for this work. The oagjpaper (Foster et al. 2007b) includes an extensive
survey of the connections between basic lenses and the yidateiproblem in the database literature. Basic lenses
for relational structures, using primitives based on refetl algebra, have also been developed (Bohannon et al.
2006). The combinators for tree lenses described in thddinstpaper can be used to write lenses for lists encoded
as trees, and all of the problems with ordered data desciibdte present work arise in that setting too. (These
problems do not come up in the relational setting, sincetituetsires handled there are unordered.)

Meertens’s formal treatment obnstraint maintainerfor user interfaces (Meertens 1998, Section 5.3) recognize
the problem we are dealing with in this paper when operatiniists, and proposes a solution for the special case of
“small updates” specified by edit operations, using a ndtwdbiconstraints between list entries. The idea of using
constraints between concrete and abstract structurelaisddo our use of keys in dictionary lenses, but handling
updates by translating edit operations represents a signifdeparture from the approach used in lenses, where
“updates” are not given as operations, but by the updatacevtdelf. The treatment of ordering for lists and trees
in the bidirectional languages X and Inv (Hu et al. 2004; M@alet2004), comes closest to handling the sorts of
“resourceful updating” situations that motivate this wofkeir approach is based on Meertens’s ideas. As in his
proposal, updates to lists in X are performed using editatpars. But rather than maintaining a correspondence
between elements of concrete and abstract lists, the sixafithe edit operation is a function yielding a tagged
value indicating which modification was performed by thet.€tihe structure editor described in (Hu et al. 2004)
based on X does handle singtsertanddeleteoperations correctly by propagating these modification tacglly in
lists. However, thenoveoperation is implemented aglaletefollowed by aninsert This means that the association
between the location of the moved element in the concretabsiact lists is not maintained, and so moved data is
populated with default values at the point of insertion;,eogr composers example is not handled correctly.

There is a large body of work on bidirectional languages firagions in which round-trips are intended to be
bijective modulo “ignorable information” (such as whitesg). XSugar (Brabrand et al. 2007) is a bidirectional
language that targets the special case when one structareX$IL document and the other is a string. Trans-
formations are specified using pairs of intertwined gransmarsimilar bidirectional language, biXid (Kawanaka
and Hosoya 2006), operates just on XML data. The PADS syskeshdr and Gruber 2005) makes it possible to



generate a data type, parser, and pretty printer for an adiat formats from a single, declarative description.
PADS comes with a rich collection of primitives for handlingvide variety of data including characters, strings,
fixed-with integers, floating point values, separated lists. Kennedy’s combinators (2004) describe pickler and
unpicklers. Benton (2005) and Ramsey (2003) both descystemms for mapping between run-time values in a host
language and values manipulated by an embedded intergregdirof these systems, as round-trips are intended to
be essentially bijective, the problems with reordering tha dictionary lenses are designed to solve do not come
up.

JT (Ennals and Gay 2007) synchronizes programs writterffierdnt high level languages, such as C and Jekyll,
an extension of C with features from ML. JT relies on a notibdistance to decide how to propagate modifications,
allowing the detection of non local edits such as the swawofftinctions. The synchronization seems to work well
in many cases but there is no claim that the semantics of tehsynized programs are the same.

Recently, Stevens (2007) has applied the ideas of basiedénghe context omodel transformationdeaving
aside issues of ordering, for the moment, though this is &fgoéuture work).

Our lens combinators are based on finite-state transdwebich were first formulated as multitape automata by
Scott and Rabin (1959). Languages based on finite-stateatadave been developed, largely in the area of natural
language processing; the collection edited by Roche andif&shgives a survey (1996). Mechanized checking for
string processing languages that, like Boomerang, have syptems based on regular automata have also been
studied (Tabuchi et al. 2002).

8. Extensionsand Future Work

This final section presents some extensions to the basigrddsscribed in previous sections—including both ideas
we have already implemented in Boomerang and ones we leavattoe work. We discuss a range of topics
including additional combinators, implementation op#ations, and stronger semantic constraints.

We first consider extensions to the set of operators, stautith sequential compositiofextending the grammar
of skeletons with a new form of pair§$;, S2), and writingX ® Y for {(x,y) | z € X,y € Y}, we can define the
sequential composition éf andl, as follows.

L € c2kB  LeB2k 4

Liily € C72%5 4

getc = l[y.get(l;.getc)
parsec = (s1,82), (da ++dy)
wheresy, dy = l;.parsec
andss, do = lo.parse(l;.getc)
keya = ls.keya
createa d = c¢,do
whereb, d; = Iy.createa d
andc, dy = [y.createb ds
puta (<81, 82>, d) = c¢,do
whereb, dy = ls.puta (s2,d)
andc, dy = ll.putb (81, dg)

8lLemma l;;lr € C S@RL Y,

Pr oof:
GETPUT: Letc € C andd € D(L) with ((s1,s2),d") = (l1 ; l2).parsec. Then by the definition ofl; ; l2).parse
we haved’ = d), ++ d} wheresy, d; = ly.parsec andss, d, = ls.parse(l;.gete).

Leta € Awith a = (I; ;l2).getc. Thena = l.getb whereb = [;.getc.



Using these facts, and the definition(df ; l2).put, we calculate as follows:

(ll ; lg).put<(l1 ; lg).getc) (<81, 82>, (d/ ++ d))
= (ly;12).put(l2.get(ly.getc)) ((s1, s2), (dy ++ d} +d))
ll-pUtb/ (817 f)
wherel', f = l.put(l2.get(l1.gete)) (s2, (dy ++ d| ++ d))

By the GETPUT property forls, we havel’ = [;.getc and f = (d} ++ d). Then, by the GTPUT property forl; we
have

ll.putb’ (Sl, f)

ll.put (ll.getc) (81, (dll ++ Cl))

= ¢, d

as required.
PUTGET: Leta € A and(s1, s2) € S1 ® Sz andd € D(L). We calculate as follows:

(ll ; l2).puta (<81, 82>, d)

= C, dg
wherec, dy = I;.putb (s1,d;)
andb, d; = ls.puta (s2,d)

By the RUTGET property forl; andis we havel;.getc = b andis.getb = a. We calculate as follows:

(I ;12).gete
= ly.get(l;.gete)
= Iy.getd

= a,

as required.
CREATEGET: Leta € A andd € D(L). We calculate as follows:

(I1;12).createa d

= C, d2
wherec, dy = l;.createb d;
andb, d, = ly.createa d

By the CREATEGET property forl; andl, we havel;.getc = b andl,.getb = a. We calculate as follows:

(I1;12).0etc
= lg.get(ll .getC)
l2.getd

= a7

as required.
O

Sequential composition is very useful in practice when sqmeprocessing of data is needed so that every
chunk with the same information actually belongs to the sasgellar language. For instance, suppose that the
concrete language is a concatenation of substrings belgngk* - y* - $ - z* followed by a separato#” and then
a concatenation of substrings belongingzto y* - z* - §. If we want to ignore the position of the symb®land



process these substrings uniformly as chunks, allowingdeging to occur freely between any chunk, we can use
the following lens:
ly =
(copy(x*-y*) - del$ - copyz* - ins$)* - copy#-
(copy (x*-y*-z*-§))*;
(Is)* - copy# - (Is)*

With ¢ = xy$zxxyy$zz#zzz$xxxyyy$, we have

ly.getc = xz3xxzz$#zzz$xxx$
ly.putxxxzzz$#xxzz$ ¢ = xxxyyy$zzz#xxyyzz$

as desired. However, the interactions of sequential coitiposvith parsing and dictionaries are somewhat tricky
because, in general, each lens in a composite can have itaawam of chunk. Thus, we leave a full investigation
of the composition operator as future work.

Thegetcomponents of the string lens combinators we have desefisegyandconstclosed under the regular
operators and composition—are all expressible as starafegdvay finite state transducers. This class contains
many useful transformations, powerful enough to expresggelcollection of examples, but has a fundamental
limitation: the restriction to finite state means that itrigpiossible for a lens to “remember” arbitrary amounts of
data. For example, with the basic combinators, we canntéavariant of the composers example where the order
of the name and nationality are inverted in the view:

"Finnish, Jean Sibelius
American, Aaron Copland"

Lifting this restriction poses no semantic problems, and #ttual set of dictionary lenses implemented in
Boomerang includes primitives for swapping and sortingteaty data. For example, the combinatwap!l; s
swaps the views computed by thetfunctions—i.e.¢;-co maps to(le.getes)-(1;.gete; )—and unswaps the results
computed by the@utfunctions.

L € 01<31:’L>A1 Cl'!CQ

Iy € CQ<S2:7L>A2 AQ'!Al

swaph lg S 01‘02 SlgL AQ'Al

getcy-co = (lg.getCQ)'(ll.getcl)

parsec; -co = (s1,82),da ++dq
wheres;, d; = [;.parsec;

keyag-al = lg.keyaz . ll.keyal

createas-aq dp = cy-co,d3

wherecsy, dy = ly.createas dq
andci, ds = [;.createa; ds
putas-a; ((51, 52), dl) = (C1°C2, d3
WhereCQ, do = lg.putag (82, dl)
wherec;, d3 = l1.putaq (81, dg)

A lens that computes the above transformation for a singleposer is the following:

swap (key ALPHA)
(del (", ™ . YEARS . ", ") . ALPHA . ins ", ")

Swap and other related primitives are used critically inlémses for real-world data that we have built, including
the BibTeX and SwissProt lenses. Building on swap and unienhave also defined lenses for handling simple



forms of sorting: e.g., where the concrete domain is thelgdging of a list of regular languages and the abstract
codomain has the languages in list order. A related geratadn of the iteration combinator yields another kind of
sorting. It partitions a sequence by moving elements thataddelong to a given regular expression to the end.

We have also implemented a generalized version ofrtitchcombinator. The lens described in Section 3 uses
a single dictionary structure to match concrete chunks piitlees of the abstract string having the same key. This
matching is performed globally across the entire concrietegs Nested match combinators provide one way to
limit the scope of matching, but in other situations, it isieenient to use matchable regions with several distinct
sorts, and to have the matching of chunks with differentsskept separate. In our implementation, we generalize
the design described above by fixing a’etf string “tags”, and associating ea@h combinator to a tag. The type
D of dictionaries is similarly generalized from finite mapesrfr keysK to lists, to finite maps from tags to K to
lists. This allows us to express transformations in whidfedent pieces of the input and view are matched globally,
using different dictionaries.

Thus far, we have assumed that keys are generated by coatiatethe non-empty substrings generated by the
key combinator. In some situations it is useful to ignore pafthe key (e.g., with nested matches), or to add a fixed
string to a key (e.g., to separate keys that are concaten&edmerang includes primitives to do these operations
on keys. More generally, our basic design could also be detdro that keys are represented by richer structures—
e.g., strings, sets, and lists—and add combinators fosfmaming between different kinds of keys. For example,
the iteration combinator could return the list of keys of ckslinstead of their flat concatenation, and this list could
be further transformed into a set, if order is not importantoncatenated into a string.

Many languages where transformations are bijective motiglworable information"—e.g., whitespace and
minor formatting details—have been proposed. We are iigetstg the generalization of this idea to lenses in
the domain of strings. Thget and put functions may discard ignorable information, and the leavegsl are only
required modulo the same information. As an example, we mapkemented a variant of theonstlens whoseayet
function produces a constant string, but whpsgfunction accepts a regular language. This variant is uséigein
SwissProt lens to indicate that whitespace occurring in Xdcuments can be ignored.

We now turn the discussion to ongoing work concerning theieficy of our implementation. Our Boomerang
interpreter is based on an NFA representation of finite aatanmThese are used to decide the side conditions
in the typing rules of dictionary lenses, and for operatisnsh as splitting a string belonging to unambiguous
concatenations into unique substrings. The performandki®fimplementation is good enough for examples of
realistic size, but we would like to engineer an optimize@l@mentation in the future. One possibility is to compile
regular expressions to DFAs using derivatives (Brzozod8ki4). Although DFAs can be exponentially larger than
NFAs, string matching is much faster, and they can be coctsttidazily. The main challenge is developing efficient
techniques for deciding non-ambiguity directly.

Another extension we would like to explore is streamingngtrienses. This is motivated by large examples
such as SwissProt, where the size of the concrete string ihemrder of 1GB! We would like to develop a
variant of the iteration combinator whogget function processes elements one at a time, rather thantopera
on a string representing the whole sequence. Similarlypthéunction would operate on elements of the abstract
string one at a time. Of course, tpat function also needs a dictionary that, in the current degigpresents the
entire concrete string. To optimize the memory requiresiene are also investigating an extension in which only
the minimum information needed to satishE@PUT is kept in skeletons and dictionaries. For examptmycould
produce a trivial skeleton rather than copying the entiiag{which is ignored byut). Interestingly, these minimal
“complements” to thgetfunction, would result irparsefunctions that calculate the coarsest equivalence satgsfy
PUTEQuIv. Thus, they may provide insights into semantic propertfdsrses such as very well behavedness.

Semantics is another area of ongoing work. TlgguE/PuT law is stated with respect to an equivalence relation
on the concrete domair. As observed, this equivalence arises naturally from aafiaty lens. Moreover, ¢
also induces an equivalence on the abstract codomain hygtéke image of~- underget However, our lenses
do not guarantee that the induced equivalence is expressiliély in terms of chunks and keys in the abstract
codomain. We are investigating an extension of dictionansés that gives rise to an explicit equivalence on the



abstract codomain- 4. With such an equivalence in hand, we would then like to ensliat our lenses translate
equivalence-preserving updates to equivalence-pregpopdates. The first step is to check that our lenses satisfy
the law

l.getc ~4 d

EQUIVEXISTS
Ad.c~c d Nl.getd =d (EQ )
which asserts, in the case where the equivalences are badesl/oespecting reorderings of chunks, that every
reordering of chunks in an abstract string can be realizeal@sresponding reordering of chunks in the concrete
domain. Combining this with uivPUT, we can prove a derived rule
l.getc~4 d
Lgsemaa (GETPUTEQUIV)
lputa c~¢c
which states that reorderings @hare, in fact, translated as reorderings @n
Finally, we plan on investigating resourceful and quagivadus lenses for trees, relations, and graphs.
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A. Manual Lenses

In this appendix we entertain a heretical proposition—thidirectional languages might not be worth the trouble.
Might it not be simpler just to write thget and put components as separate functions in a general-purpose
programming languag@?o evaluate this proposition (and ultimately reject it), a@nsider OCaml definitions
of the getandput functions for the composers example from the introductéog then step through the reasoning
needed to verify that they are total and obey the lens laws.

Theget function is written as follows:

let get ¢ =
let comps_c = split ’\n’ c in
let comps_a = List.map
(fun ci —>
let [n;y;c] = split ’,’ ci in
join ’,’ [n;cl)
comps_c in

join ’\n’ comps_a
It splits the input into a list of lines, maps a function ouaistlist that retains the name and country from each line,
and joins the resulting list. The corresponding function is:

let put a ¢ =
let a_s,c_s = split ’\n’ a, split ’\n’ c in

50f course, there are many semantically valid lenses whesandput functions caronly be expressed in a general-purpose language—or,
equivalently, by adding new primitives to Boomerang. Wieethr not our choice to focus on finite-state string trandgdusthits a “sweet
spot” between expressiveness and tractable reasoningfierait question—one whose answer will require more eepee with additional
real-world examples.



let c_s_assoc = List.map
(fun ci -> let [n;y;c] = (split ’,’ ci) in (n,y))
c_s in

let cs’ = List.fold_left
(fun (acc, assoc) ai ->

let [n;c] = split ’,’ ai in

let yi = assoc_find n assoc " 0000-0000" in
let assoc’ = assoc_remove n assoc in

((join ’,’ [n;yi;cl)::acc, assoc’))

([1, c_s_assoc) a_s in
join ’\n’ (List.rev (fst cs’))

This splits the concrete and abstract arguments into Ifslises, and then constructs an association list from the
concrete list in which every name is paired with the correslireg year range. Next, it folds down the abstract list,
locates a year range from the association list (using a defen none is found), and concatenates the name, dates,
and nationality together. Finally, it joins the resultingt,| yielding the new concrete view.

These two functions have the same behavior as the seconfidemshe introduction. To finish the job we need
to prove that each function is total and that the pair satigfie lens laws. Demonstrating totality is not difficult,
although we need to say what type they are total at. They dr®tab functions on the set of all strings—e.g., when
get is applied to

"Jean\nSibelius, 1865-1957, Finnish"

neither line yields a list of length three when split y Which triggers aMatch_failure exception. To prevent
such failures, we can wrap the bare functions with code thetks that the arguments match the regular expressions

[A-Za-z ]+, [0-9]1{4}-[0-9]{4}, [A-Za-z ]+
and:
[A-Za-z 1+, [A-Za-z 1+

With this modification, checking totality is straightforveh

To verify the GETPUT law, we have to consider an arbitrary concrete string tagettith the unique abstract
string produced from it by thget function, and show that applyingut to these arguments yields the original
concrete string. We can do this in three steps. First, welctied the string obtained by joiningomps_a produced
at the end oget splits into the same list at the startmft. Second, we check that each step ofithet . fold_left
locates the correct year range for the composer. This regjaiffew additional steps of reasoning about the value
in the assoc accumulator as it is threaded through the fold (in particutahe list contains repeated names, then
we must verify that the corresponding year ranges are exbtoositionally). Finally, we check that the order of
elements in the updated concrete list is the same as in tgmalriconcrete list. Checkingl® GET is similar but
simpler, since the year ranges producegtiy do not matter—they are discarded gat. Checking EQuIvPUT is
also straightforward since thait function only uses the concrete string via the associat&intlconstructs, and
every concrete list containing the same names and datestmtpssame association list.

By contrast, the Boomerang version of the same lens (wiitega with explicit regular expressions)

let comp = key [A-Za-z ]+ . copy ", "
. del ([0-91{4} . "-" . [0-91{4} . ", ™
. copy [A-Za-z ]+

let comps = "" | <comp> . ("\n" . <comp>)*

consists of a single phrase which is only a little more coogtéid than the regular expressions that we had to add
to the OCaml program to ensure totality. Moreover, typesrdegred automatically, and well-typedness implies the
lens laws.



All this is nice. But thereal benefits of using a bidirectional language become apparkenwhe lens evolves.
Suppose that, for some reason, we decide that the charae@ta separate the fields in each line should §e “
Changing the Boomerang program requires two local changes-fer each occurrence of'a". Theget andput
functions and inferred types all change automatically. Bgtast, the OCaml functions and regular expressions
have eight occurrences of ™, and these are scattered across two functions and twoaregxbressions! Moreover,
the totality and lens law proofs must each be rechecked bg.Hamparticular, we need to verify that changing the
separator does not introduce an ambiguity that breaks thpepty thatsplit andjoin are inverses.

Of course, this change could have been made simpler by dgfinenseparator as a constant. But now suppose
we need to change the concrete format to:

Jean Sibelius: 1865-1957, Finnish

The lens program only requires one change. The OCaml furs;tibowever, require significant modifications
because a single invocation split for each line is no longer enough. Instead, we have to sptih déiae by
“:”, and then again by,”. Making this change requires touching several lines ofece@nd correspondingly deep
revisions to the proofs of totality and the lens laws. At fhdént, the urge to cut corners—make changes to the code
but skip fixing the proofs (if indeed they were written outliretfirst place)—will be strong.

Thus, even for this nearly trivial example, a bi-directiblaaguage is a much more attractive option. The low-
level, two-function approach is surprisingly difficult tetyight in the first place and even more difficult to imagine
maintaining.



