
Boomerang: Resourceful Lenses for String Data

Aaron Bohannon

University of Pennsylvania

J. Nathan Foster

University of Pennsylvania

Benjamin C. Pierce

University of Pennsylvania

Alexandre Pilkiewicz

École Polytechnique

Alan Schmitt

INRIA Rhône-Alpes

Technical Report MS-CIS-07-15
Department of Computer and Information Science

University of Pennsylvania

November 19, 2007

Abstract

A lensis a bidirectional program. When read from left to right, it denotes an ordinary function that maps inputs to
outputs. When read from right to left, it denotes an “update translator” that takes an input together with an updated
output and produces a new input that reflects the update. Manyvariants of this idea have been explored in the
literature, but none deal fully withordereddata. If, for example, an update changes the order of a list inthe output,
the items in the output list and the chunks of the input that generated them can be misaligned, leading to lost or
corrupted data.

We attack this problem in the context of bidirectional transformations over strings, the primordial ordered data
type. We first propose a collection of bidirectionalstring lens combinators, based on familiar operations on regular
transducers (union, concatenation, Kleene-star) and witha type system based on regular expressions. We then
design a new semantic space ofdictionary lenses, enriching the lenses of Foster et al. (2007b) with support for
two additional combinators for marking “reorderable chunks” and their keys. To demonstrate the effectiveness of
these primitives, we describe the design and implementation of Boomerang, a full-blownbidirectional programming
languagewith dictionary lenses at its core. We have used Boomerang tobuild transformers for complex real-world
data formats including the SwissProt genomic database.

We formalize the essential property ofresourcefulness—the correct use of keys to associate chunks in the input
and output—by defining a refined semantic space ofquasi-oblivious lenses. Several previously studied properties of
lenses turn out to have compact characterizations in this space.

1. Introduction

“The art of progress is to preserve order amid change
and to preserve change amid order.”

—A N Whitehead

Most of the time, we use programs in just one direction, from input to output. But sometimes, having computed
an output, we need to be able toupdatethis output and then “calculate backwards” to find a correspondingly
updated input. The problem of writing such bidirectional transformations arises in a multitude of domains, including
data converters and synchronizers, parsers and pretty printers, picklers and unpicklers, structure editors, constraint
maintainers for user interfaces, and, of course, in databases, where it is known as the view update problem. Our own

study of bidirectional transformations is motivated by their application in a generic synchronization framework,
called Harmony, where they are used to synchronize heterogeneous data formats against each other (Pierce et al.
2006; Foster et al. 2007a).

The naive way to write a bidirectional transformation is simply to write two separate functions in any language
you like and check (by hand) that they fit together in some appropriate sense—e.g., that composing them yields the
identity function. However, this approach is unsatisfyingfor all but the simplest examples. For one thing, verifying
that the two functions fit together in this way requires intricate reasoning about their behaviors. Moreover, it createsa
maintenance nightmare: both functions will embody the structure that the input and output schemas have in common,
so changes to the schemas will require coordinated changes to both. (See the appendix for a concrete example.)

A better alternative is to design a notation in which both transformations can be described at the same time—i.e.,
a bidirectional programming language. In a bidirectional language, every expression, when read from left to right,
denotes a function mapping inputs to outputs; when read fromright to left, the same expression denotes a function
mapping an updated output together with an original input toan appropriately updated version of the input. Not
only does this eliminate code duplication; it also eliminates paper-and-pencil proofs that the two transformations fit
together properly: we can design the language to guarantee it.

Many different bidirectional languages have been proposed, including constraint maintainers (Meertens 1998),
pickler combinators (Kennedy 2004), embedding projectionpairs (Benton 2005; Ramsey 2003), X/Inv (Hu et al.
2004), XSugar (Brabrand et al. 2007), biXid (Kawanaka and Hosoya 2006), PADS (Fisher and Gruber 2005),
and bi-arrows (Alimarine et al. 2005). The design challengefor all these languages lies in striking a balance
between expressiveness and reliability—making strong promises to programmers about the joint behavior of pairs
of transformations and the conditions under which they can safely be used.

Lenses

The language described in this paper is an extension of our previous presentation on lenses (Foster et al. 2007b)—
calledbasic lenseshere.1 Among the bidirectional languages listed above, lenses areunique in their emphasis on
strong guarantees on behavior and on compositional reasoning techniques for establishing those guarantees.

Formally, a basic lensl mapping between a set of inputsC (“concrete structures”) and a set of outputsA (“abstract
structures”) comprises three functions

l.get ∈ C −→ A

l.put ∈ A −→ C −→ C

l.create ∈ A −→ C

obeying the following laws for everyc ∈ C anda ∈ A:

l.put (l.getc) c = c (GETPUT)

l.get(l.put a c) = a (PUTGET)

l.get(l.createa) = a (CREATEGET)

The set of basic lenses fromC to A is writtenC ⇐⇒ A.
Thegetcomponent of a lens may, in general, discard some of the information from the concrete structure while

computing the abstract structure. Theput component therefore takes as arguments not only an updated abstract
structure but also the original concrete structure; it weaves the data from the abstract structure together with
information from the concrete structure that was discardedby the get component, yielding an updated concrete

1 Readers familiar with the original presentation will notice some minor differences. First we handle situations where an element ofC must
be created from an element ofA using acreatefunction instead of enrichingC with a special elementΩ and usingput. Second, as we are
not considering lenses defined by recursion, we take the components of lenses to be total functions rather than defining lenses withpartial
components and establishing totality later. Finally, we take the behavioral laws as part of the fundamental definition of basic lenses, rather
than first defining bare structures of appropriate type and then adding the laws—i.e., in the terminology of Foster et al. (2007b), basic lenses
correspond towell-behaved, total lenses.

structure. Thecreatecomponent is likeput except that it only takes anA argument; it supplies defaults for the
information discarded byget in situations where only the abstract structure is available.

Every lens obeys three laws. The first stipulates that theput function must restore all of the information discarded
by theget if its arguments are an abstract structure and a concrete structure that generates the very same abstract
structure; the second and third demand that theput andcreatefunctions propagate all of the information in the
abstract structure back to the updated concrete structure.These laws are closely related to classical conditions on
view update translators in the database literature (see Foster et al. (2007b) for a detailed comparison).

Motivations and Contributions

In previous work, we designed lenses for trees (Foster et al.2007b) and for relations (Bohannon et al. 2006); in
this paper we address the special challenges that arise whenordereddata is manipulated in bidirectional languages.
Our goals are both foundational and pragmatic. Foundationally, we explore the correct treatment of ordered data,
embodied abstractly as a new semantic law stipulating that theput function must align pieces of the concrete and
abstract structures in a reasonable way, even when the update involves a reordering. Pragmatically, we investigate
lenses on ordered data by developing a new language based around notions of chunks, keys, and dictionaries. To
ground our investigation, we work within the tractable arena of string transformations. Strings already expose many
fundamental issues concerning ordering, allowing us to grapple with these issues without the complications of a
richer data model.

While primary focus is on exposing fundamental issues, we have also tried to design our experimental lan-
guage, Boomerang, to be useful in practice. There is a lot of string data in the world—textual database formats
(iCalendar, vCard, BibTeX, CSV), structured documents (LaTeX, Wiki, Markdown, Textile), scientific data (Swis-
sProt, Genebank, FASTA), and simple XML formats (RSS, AJAX data) and microformats (JSON, YAML) whose
schemas are non-recursive—and it is often convenient to manipulate this data directly, without first mapping it to
more structured representations. Since most programmers are already familiar with regular languages, we hope that
a bidirectional language for strings built around regular operations (i.e., finite state transducers) will have broad
appeal.

Our contributions can be summarized as follows:

1. We develop a set ofstring lens combinatorswith intuitive semantics and typing rules that ensure the lens laws,
all based on familiar regular operators (union, concatenation, and Kleene-star).

2. We address a serious issue in bidirectional manipulationof ordered data—the need for lenses to be able to
match up chunks of data in the concrete and abstract structures by key rather than by position, which we call
resourcefulness—by adding two more combinators and interpreting all the combinators in an enriched semantic
space ofdictionary lenses.

3. We formalize a condition calledquasi-obliviousnessand use it to study properties of dictionary lenses. Some
previously studied properties of basic lenses also have neat characterizations using this condition.

4. We sketch the design and implementation ofBoomerang, a full-blownbidirectional programming languagebased
on dictionary lenses, and describe some programs we have built for transforming real-world data structures such
as SwissProt.

String Lenses

To give a first taste of these ideas, let us consider a simple example where the concrete structures are newline-
separated records, each with three comma-separated fields representing the name, dates, and nationality of a classical
composer

"Jean Sibelius, 1865-1957, Finnish

Aaron Copland, 1910-1990, American

Benjamin Britten, 1913-1976, English"

and the abstract structures include just names and nationalities:

"Jean Sibelius, Finnish

Aaron Copland, American

Benjamin Britten, English"

Here is a string lens that implements this transformation:

let ALPHA = [A-Za-z]+

let YEARS = [0-9]{4} . "-" . [0-9]{4}

let comp = copy ALPHA . copy ", "

. del YEARS . del ", "

. copy ALPHA

let comps = copy "" | comp . (copy "\n" . comp)*

The first two lines define ordinary regular expressions for alphabetical data and year ranges. We use standard POSIX
notation for character sets ([A-Za-z] and[0-9]) and repetition (+ and{4}).

The lens that processes a single composer iscomp; lists of composers are processed bycomps. In thegetdirection,
these lenses can be read as ordinary string transducers, written in regular expression style:copy ALPHA matches
ALPHA in the concrete structure and copies it to the abstract structure, andcopy ", " matches and copies a literal
comma-space, whiledel YEARS matchesYEARS in the concrete structure but adds nothing to the abstract structure.
The union (|), concatenation (.), and iteration (*) operators work as expected. Thus, theget component ofcomp
matches an entry for a single composer, consisting of a substring matching the regular expressionALPHA, followed
by a comma and a space (all of which are copied to the output), followed by a string matchingYEARS and another
comma and space (which are not copied) and a finalALPHA. Thegetof comps matches either a completely empty
concrete structure (which it copies to the output) or a newline-separated concatenation of entries, each of which is
processed bycomp.

The put component ofcomps restores the dates positionally: the name and nationality from thenth line in the
abstract structure are combined with the years from thenth line in the concrete structure, using a default year range
to handle cases where the abstract structure has more lines than the concrete one. We will see precisely how all this
works in Section 2; for now, the important point is that theputcomponent ofcomps operates by splitting both of its
arguments into lines and invoking theput component ofcomp on the first line from the abstract structure together
with the first line from the concrete structure, then the second line from the abstract structure together with the
second line from the concrete structure, etc. For some updates—e.g., when entries have been edited and perhaps
added at the end of the abstract structure but the order of lines has not changed—this policy does a good job. For
example, if the update to the abstract structure replaces Britten’s nationality with “British” and adds an entry for
Tansman, theput function combines the new abstract structure

"Jean Sibelius, Finnish

Aaron Copland, American

Benjamin Britten, British

Alexandre Tansman, Polish"

with the original concrete structure and yields

"Jean Sibelius, 1865-1957, Finnish

Aaron Copland, 1910-1990, American

Benjamin Britten, 1913-1976, British

Alexandre Tansman, 0000-0000, Polish"

(the default year range0000-0000 is generated by thedel lens incomp from the regular expressionYEARS).

Problems with Order

On other examples, however, the behavior of thisput function is highly unsatisfactory. If the update to the abstract
string breaks the positional association between lines in the concrete and abstract strings, the output will be
mangled—e.g., when the update to the abstract string is a reordering, combining

"Jean Sibelius, Finnish

Benjamin Britten, English

Aaron Copland, American"

with the original concrete structure yields an output

"Jean Sibelius, 1865-1957, Finnish

Benjamin Britten, 1910-1990, English

Aaron Copland, 1913-1976, American"

where the year data has been taken from the entry for Copland and inserted into into the entry for Britten, and vice
versa.

This is a serious problem, and a pervasive one: it is triggered whenever a lens whoseget function discards
information is iterated over an ordered list and the update to the abstract list breaks the association between elements
in the concrete and abstract lists. It is a show-stopper for many of the applications we want to write.

What we want is for theput to align the entries in the concrete and abstract strings by matching up lines with
identical name components. On the inputs above, thisput function would produce

"Jean Sibelius, 1865-1957, Finnish

Benjamin Britten, 1913-1976, English

Aaron Copland, 1910-1990, American"

but neither basic lenses nor any other existing bidirectional language provides the means to achieve this effect.

Dictionary Lenses

Our solution is to enrich lenses with a simple mechanism for trackingprovenance(Cui and Widom 2003; Buneman
et al. 2001, etc.). The idea is that the programmer should identify chunksof the concrete string and akeyfor each
chunk. These induce an association between chunks and pieces of the abstract string, and this association can be
used byputduring the translation of updates to find the chunk corresponding to each piece of the abstract, even if the
abstract pieces have been reordered. Operationally, we retool all ourput functions to use this association by parsing
the whole concrete string into a dictionary, where each concrete chunk is stored under its key, and then making this
dictionary, rather than the string itself, available to theput function. We call these enriched structuresdictionary
lenses.

Here is a dictionary lens that gives us the desired behavior for the composers example:

let comp = key ALPHA . copy ", "

. del (YEARS . ", ")

. copy ALPHA

let comps = "" | <comp> . ("\n" . <comp>)*

The first change from the earlier version of this program is that the two occurrences ofcomp in comps are
marked with angle brackets, indicating that these subexpressions are the reorderable chunks of information. The
corresponding substring of the concrete structure at each occurrence (which is passed to theputof comp) is obtained
not positionally but by matching keys. The second change is that the firstcopy at the beginning ofcomp has been
replaced by the special primitivekey. The lenskey ALPHA has the same copying behavior ascopy ALPHA, but it
additionally specifies that the matched substring is to be used as the key of the chunk in which it appears—i.e., in
this case, that the key of each composer’s entry is their name. This choice means that we can both reorder the entries
in the abstract structure and edit their nationalities, since the correspondence between chunks in the concrete and
abstract structures is based just on names. We do not actually demand that the key of each chunk be unique—i.e.,
these “keys” are not required to be keys in the strict database sense. If several pieces of the abstract structure have
the same key, they are matched by position.

Quasi-Obliviousness

For the composers example, the behavior of the new dictionary lens is clearly preferable to that of the original basic
lens: itsput function has the effect of translating a reordering on the abstract string into a corresponding reordering
on the concrete string, whereas theput function of the original lens works by position and producesa mangled result.
We would like a characterization of this difference—i.e., away of expressing the intuition that the second lens does
something good, while the first does not.

To this end, we define a semantic space of lenses calledquasi-oblivious lenses. Let l be a lens inC ⇐⇒ A and
let ∼ be an equivalence relation onC. We say thatl is a quasi-oblivious lens with respect to∼ if its put function
ignores differences between equivalent concrete arguments.

We are primarily interested in lenses that are quasi-oblivious with respect to an equivalence relating concrete
strings up to reorderings of chunks. It should be clear that adictionary lens that operates on dictionaries in which
the relative order of concrete lines is forgotten will be quasi-oblivious with respect to such an equivalence, while the
analogous basic lens, which operates on lines positionally, is not. Using the above condition onput, we can derive
intuitive properties for many such quasi-oblivious lenses—e.g., for the dictionary lens for composers above, we can
show that updates to the abstract list consisting of reorderings are translated by theputas corresponding reorderings
on the concrete list.

Lenses that are quasi-oblivious with respect to equivalences other than reordering are also interesting. Indeed, we
can characterize some important special cases of basic lenses (obliviousandvery well behavedlenses) in terms of
quasi-obliviousness.

Boomerang

Our theoretical development focuses on a small set of basic combinators. Of course, writing large programs entirely
in terms of such low-level primitives would be tedious; we don’t do this. Instead, we have implemented a full-blown
programming language, called Boomerang, in which the combinators are embedded in a functional language,à la
Algol-60. That is, a Boomerang program is a functional program over the base type “lens”; to apply it to string data,
we first evaluate the functional program to produce a lens, and then apply this lens to the strings. This functional
infrastructure can be used to abstract out common patterns as generic bidirectional libraries (e.g., for processing
XML structures) that make higher-level programming quite convenient.

Boomerang also comes equipped with a type checker that infers lens types and checks the conditions needed to
ensure that a dictionary lens satisfies the lens laws. The domain and codomain types for dictionary lenses are regular
languages, so the analysis performed by this checker is veryprecise—a huge aid in writing correct lens programs.

Using Boomerang, we have developed several large lenses forprocessing a variety of data including vCard,
CSV, and XML address books, BibTeX and RIS bibliographic databases, LaTeX documents, iTunes libraries, and
databases of protein sequences represented in the ASCII SwissProt format and XML.

Outline

Section 2 introduces notation and formally defines the basicstring lenses used in the first example above. Syntax,
semantics, and typing rules for dictionary lenses are givenin Section 3. Section 4 defines the refined semantic space
of quasi-oblivious lenses. Sections 5 and 6 describe Boomerang and our experiences building lenses for real-world
data formats. Section 7 discusses related work. Section 8 describes extensions and ideas for future work.

2. Basic String Lenses

Before presenting dictionary lenses, let us warm up by formalizing the language for basic lenses from the first
example in the introduction. LetΣ be a fixed alphabet (e.g., ASCII). A language is a subset ofΣ∗. Metavariables
u, v, w range over strings inΣ∗, andǫ denotes the empty string. The concatenation of two stringsu andv is written
u·v; concatenation is lifted to languagesL1 andL2 in the obvious way:L1·L2 = {u·v | u ∈ L1 andv ∈ L2}. We
write L∗ to denote the iteration ofL: i.e., L∗ =

⋃∞
n=0 Ln whereLn denotes then-fold concatenation ofL with

itself
L0 = {ǫ} andL1 = L, L2 = L·L, ...

The typing rules for some lenses require that for every string belonging to the concatenation of two languages,
there be a unique way of splitting that string into two substrings belonging to the concatenated languages. Two
languagesL1 andL2 are unambiguously concatenable, writtenL1·

!L2, if for every u1, v1 in L1 andu2, v2 in L2

if u1·u2 = v1·v2 thenu1 = v1 andu2 = v2. Similarly, a languageL is unambiguously iterable, writtenL!∗, if for
everyu1, . . . , um, v1, . . . , vn,∈ L, if u1·····um = v1·····vn thenm = n andui = vi for everyi from 1 to n.

2.1 Fact: It is decidable whether two regular languagesL1 andL2 are unambiguously concatenable and whether a
single languageL is unambiguously iterable.

Proof sketch: Let M1 andM2 be DFAs acceptingL1 andL2. Construct an NFAN12 for L1·L2 using the standard
Thompson construction. An NFAN is ambiguous iff there exists a string for which there are twodistinct paths
throughN ; ambiguity of NFAs can be decided bysquaring(Berstel et al. 2005, Prop. 4.3):N is ambiguous iff
there is a path throughN × N that does not lie entirely on the diagonal. It is easy to show that L1 andL2 are
unambiguously concatenable iffN12 is unambiguous. Unambiguous iteration is similar. �

Regular expressions are generated by the grammar

R ::= u | R·R | R|R | R∗

whereu ranges over arbitrary strings (includingǫ). The notation[[E]] denotes the (non-empty) language described
by E ∈ R. The functionchoose(E) picks an arbitrary element from[[E]].

With that notation in hand, we now define five combinators for building basic string lenses over regular
languages. Recall that we writel ∈ C ⇐⇒ A whenl is a basic lens mapping between strings inC andA. Each
basic lens expects to be applied to arguments in its domain/codomain—it is nonsensical to do otherwise. In our
implementation, we perform a membership test on every string before supplying it to a lens. (We do this check just
once, at the top level: internally, the typing rules guarantee that every sublens is provided with well-typed inputs.)

The simplest primitive,copyE, copies every string belonging to (the language denoted by)E from the concrete
structure to the abstract structure, and conversely in theputdirection. The components ofcopyare precisely defined
in the box below. The second primitive lens,constE u v maps every string belonging toE to a constant stringu.
Its put function restores its concrete argument. It also takes as anargument a defaultv belonging toE, which is
used bycreatewhen no concrete argument is available. Note thatconstsatisfies PUTGET because its codomain is a
singleton set.

The inference rules should be read as the statements of lemmas that each combinator is a basic lens at the given
type.

E ∈ R

copyE ∈ [[E]]⇐⇒ [[E]]

getc = c

puta c = a

createa = a

E ∈ R u ∈ Σ∗ v ∈ [[E]]

constE u v ∈ [[E]]⇐⇒ {u}

getc = u

puta c = c

createa = v

Several lenses can be expressed as syntactic sugar usingconst:

E ↔ u ∈ [[E]]⇐⇒ {u}
E ↔ u = constE u (choose(E))

delE ∈ [[E]]⇐⇒ {ǫ}
delE = E ↔ ǫ

insu ∈ {ǫ} ⇐⇒ {u}
insu = ǫ↔ u

They behave as follows:E ↔ u is like const, but uses an arbitrary element ofE for create; thegetfunction ofdelE
deletes a concrete string belonging toE and restores the deleted string in theput direction; ins u inserts a fixed
stringu in thegetdirection and deletesu in the opposite direction.

The next three combinators build bigger lenses from smallerones using regular operators. Concatenation is
simplest:

C1·!C2 A1·!A2

l1 ∈ C1 ⇐⇒ A1 l2 ∈ C2 ⇐⇒ A2

l1·l2 ∈ C1·C2 ⇐⇒ A1·A2

get(c1·c2) = (l1.getc1)·(l2.getc2)
put (a1·a2) (c1·c2) = (l1.puta1 c1)·(l2.puta2 c2)
create(a1·a2) = (l1.createa1)·(l2.createa2)

The notationc1·c2 used in the definition of concatenation assumes thatc1 and c2 are members ofC1 and C2

respectively; we use this convention silently in the rest ofthe paper.
The typing rule for concatenation requires that the concrete domains and the abstract codomains each be

unambiguously concatenable. This condition is essential for ensuring that the components of the lens are well-
defined functions and that the whole lens is well behaved. As an example of what would go wrong without these
conditions, consider the (ill-typed) lenslambig , defined as(a↔ a | aa↔ aa)·(a↔ b | aa↔ b) (we assume “↔”
binds tighter than “|”, which is defined formally below). Theget component is not well defined since, according
to the above specification,lambig .getaaa = ab if we split aaa into a·aa and lambig .getaaa = aab if we split it
into aa·a. This issue could be side-stepped using a fixed policy for choosing among multiple parses (e.g., with a
shortest match policy,lambig .getaaa = ab). However, doing so would not always give us a lens that satisfies the
lens laws; intuitively, just because one direction uses a given match policy does not mean that the string it produces
will split the same way using the same policy in the other direction. Considerlbogus defined ask·k wherek is
(a ↔ bb | aa ↔ a | b ↔ b | ba ↔ ba). Then using the shortest match policy we havelbogus .get aaa equals
(k.geta)·(k.getaa), which isbba, but lbogus .put bba aaa equals(k.put b a)·(k.put ba aa), which isbba. That is,
the GETPUT law fails. For these reasons, we require that each pair ofC1 andC2 andA1 andA2 be unambiguously
concatenable.

The Kleene-star combinator is similar:

l ∈ C ⇐⇒ A C !∗ A!∗

l∗ ∈ C∗ ⇐⇒ A∗

get(c1 ···cn) = (l.getc1)···(l.getcn)
put (a1 ···an) (c1 ···cm) = c′1 ···c

′
n

wherec′i =

{

l.putai ci i ∈ {1, ...,min(m, n)}
l.createai i ∈ {m + 1, ..., n}

create(a1 ···an) = (l.createa1)···(l.createan)

Note that theputcomponent ofl∗ calls theputof l on elements ofA andC having the same index in their respective
lists. This is the root of the undesirable behavior in the example in the introduction.2 Also note that it must handle
cases where the number ofAs is not equal to the number ofCs. Since the number ofAs produced by thegetof l∗

equals the number ofCs in its argument, the result of theput function must have exactly as manyCs as there are
As in its abstract string—otherwise, PUTGET would not hold. When there are moreCs thanAs, the lens simply
ignores the extraCs. When there are moreAs, it must put them back into the concrete domain, but it has noconcrete
argument to use. It usesl.createto process these extra pieces.

The final combinator forms the union of two lenses:

C1 ∩ C2 = ∅
l1 ∈ C1 ⇐⇒ A1 l2 ∈ C2 ⇐⇒ A2

l1 | l2 ∈ C1 ∪ C2 ⇐⇒ A1 ∪A2

getc =

{

l1.getc if c ∈ C1

l2.getc if c ∈ C2

puta c =























l1.puta c if c ∈ C1 ∧ a ∈ A1

l2.puta c if c ∈ C2 ∧ a ∈ A2

l1.createa if c ∈ C2 ∧ a ∈ A1 \A2

l2.createa if c ∈ C1 ∧ a ∈ A2 \A1

createa =

{

l1.createa if a ∈ A1

l2.createa if a ∈ A2 \A1

The typing rule forcesC1 andC2 to be disjoint. Like the ambiguity condition in the rule for concatenation, this
condition is essential to ensure that the lens is well defined. The abstract codomains, however, may overlap. In the
put direction, when the abstract argument belongs toA1 ∩ A2, the union lens uses the concrete argument to select
a branch. In thecreatefunction, since no concrete argument is available, it just usesl1. (This choice is arbitrary,
but is not a limitation: to usel2 by default, the programmer writesl2 | l1. It does mean, though, that union is not
commutative.)

In some situations, theput function is invoked with an original concrete viewc belonging to the concrete domain
of the lens on one side of the union (sayl1) and an updated abstract viewa belonging to the abstract codomain of
the opposite lens (l2). Althoughc is not an element ofC2, it may still have information that can be represented in
C2. If such information was thrown away when computing the abstract view, then we would like for theput function
to reintegrate it, in some manner, witha. The original presentation of basic lenses (Foster et al. 2007b) included a
notion of “fixup” functions—fromC2 to C1 and vice versa—for extracting the common information and mapping it
into a concrete argument of appropriate type. Semanticallyfixup functions are exactly what is needed—one can show
that the conditional lens formulated using them is most general. But syntactically they are very unattractive, because
the programmer has to write down two additional functions onthe concrete domains! We believe that dictionary
lenses may offer a better alternative because, in their basic form, they have the ability to transfer information from
one side of a union to another via the dictionary without requiring explicit fixup functions (see Section 3). Thus, we
refrain from introducing fixup functions here and make the simple, but arguably sub-optimal, choice of discarding
the concrete argument in these cases.

3. Dictionary Lenses

Now that we’ve seen basic string lenses, let us define lenses that deal more flexibly with ordering. We will
accomplish this by adding two new primitives,match (written with angle brackets in the concrete syntax of

2 We cannot, however, repair the problem just by fixing Kleene-star; the same issues come up with concatenation.

Boomerang) andkey, and interpreting these new primitives and the primitives defined in the previous section in
a refined space calleddictionary lenses.

The main difference between basic and dictionary lenses is that theirputcomponents operate on different types of
structures—strings and dictionaries respectively. Dictionary lenses also include two new components:parse, which
is used to build a dictionary out of a concrete string, andkey, which is used to compute the key of data that goes into
a dictionary.

In a dictionary lens, the work of the basic lensput function is divided into two phases. In the first, the concrete
string is given toparse, which splits it into two parts: a collection of concrete chunks organized as a dictionary and
askeletonrepresenting the parts of the string outside of the chunks. In the second, theput function uses the abstract
string, the skeleton, and the dictionary to build an updatedconcrete string (and a new dictionary). These phases
occur in strict sequence: given a dictionary lensl, an abstract stringa, and a concrete stringc, we first parsec,
which yields a skeletons and dictionaryd; these are then passed, together witha, to l’s put function, which walks
recursively over the structure ofs anda, threadingd throughl’s sublenses and pulling chunks out as needed.

To streamline the exposition, we start with the definition ofdictionary lenses, which relies on several notions we
have not seen yet—skeleton setsS, the set of keysK, dictionary type specificationsL, dictionary typesD(L), and
an infix operation++ that appends dictionary values. These are defined below.

A dictionary lens fromC to A with skeleton typeS and dictionary type specificationL has components

l.get ∈ C −→ A

l.parse ∈ C −→ S ×D(L)
l.key ∈ A −→ K

l.create ∈ A −→ D(L) −→ C ×D(L)
l.put ∈ A −→ S ×D(L) −→ C ×D(L)

obeying the following behavioral laws:3

s, d′ = l.parsec d ∈ D(L)

l.put (l.getc) (s, (d′ ++ d)) = c, d
(GETPUT)

c, d′ = l.puta (s, d)

l.getc = a
(PUTGET)

c, d′ = l.createa d

l.getc = a
(CREATEGET)

We writeC
S,L
⇐⇒ A for the set of dictionary lenses with this type.

Both createandputconsume dictionaries. We thread dictionaries through calls to these functions in a functional
style that simulates a global, mutable dictionary, and remove entries as they are used, so that the next lookup of the
same key finds the (positionally) next chunk from the concrete string. Theput function takes a skeleton argument,
whereas thecreatefunction does not. The skeleton, when available, represents the original concrete string with the
chunks removed and provides enough information to reconstruct the original concrete string in cases where GETPUT

requires it.
To see how the components of a dictionary lens fit together, let us see how to build a basic lensl from a dictionary

lensl:
l.getc = l.getc
l.puta c = π1(l.puta (l.parsec))

l.createa = π1(l.createa {})

This definition embodies the strict phase separation between parseandput discussed above. It is easy to show that
the dictionary lens laws guarantee the original laws for basic lenses built this way.

3 In law GETPUT, the extra dictionaryd shows that all and only the chunks originating fromc are used by theput function.

3.1 Theorem: If l ∈ C
S,L
⇐⇒ A thenl ∈ C ⇐⇒ A.

Proof:
GETPUT: Let c ∈ C andd ∈ D(L) with s, d = l.parsec anda = l.getc. We calculate as follows:

l.put (l.getc) c

π1(l.put (l.getc) (l.parsec)) by definition ofl.put
= π1(l.puta (s, d)) by assumptions
= π1(c, {}) by GETPUT for l

= c by definitionπ1.

PUTGET: Let a ∈ A andc ∈ C with s, d = l.parsec. We calculate as follows:

l.get(l.puta c)

l.get(π1(l.puta (l.parsec))) by definition ofl.put
= l.get(π1(l.puta (s, d))) by assumption
= l.get(π1(c

′, d′)) for somec′, d′

= l.get(c′) by definitionπ1

= a by PUTGET for l.

CREATEGET: Let a ∈ A. We calculate as follows:

l.get(l.createa)

l.get(π1(l.createa {})) by definition ofl.create
= l.get(π1(c

′, d′)) for somec′, d′

= l.get(c′) by definitionπ1

= a by CREATEGET for l.

�

We now give the definitions deferred previously. We writeh :: t for the list with headh and tailt, List(X) for
the set of lists ofX and, andl1 @ l2 for the concatenation of listsl1 and l2. We writeX × Y for the set of pairs
{(x, y) | x ∈ X andy ∈ Y }. We take the set of skeletonsS to be the smallest set closed under these operations
that includes plain strings and a distinguished atom�, which is used to mark the locations of chunks in skeletons.
Formally,S =

⋃∞
n=0 Sn, whereS0 = Σ∗ ∪ {�} andSi+1 = Si ∪ (Si × Si) ∪ List(Si). We defineK, the set of

keys, to be justΣ∗ (richer structures are also possible; see Section 8).
As chunks may be nested within chunks (by nesting thematchcombinator), the type of dictionaries is recursive.

A dictionary is a total function from keys to lists of pairs, each consisting of a skeleton and another dictionary.
Formally, the set of dictionaries is defined recursively on the structure of a list of sets of skeletonsL ∈ List(P(S))
specifying the skeletons that may appear at each level, as follows:

D([]) = K −→ {[]}

D(S :: L) = K −→ List(S ×D(L))

We write{} for the dictionary that maps everyk to the empty list. Letd be a dictionary,k a key, andv a skeleton-
dictionary pair list of appropriate type. The update of a dictionary, writtend[k ← v], is defined as

d[k ← v](k′) =

{

d(k′) if k′ 6= k

v if k′ = k

We write{k1 7→ v1, . . . , kn 7→ vn} for {}[k1 ← v1]···[kn ← vn]. The concatenation of two dictionariesd1 andd2,
written d1 ++ d2, is defined using list concatenation as follows:(d1 ++ d2)(k) = d1(k) @ d2(k). It is easy to check
that this concatenation operation is associative.

3.2 Lemma: For alld1, d2, d3 ∈ D(L), (d1 ++ d2) ++ d3 = d1 ++ (d2 ++ d3).

Proof: Let k ∈ K. Then

((d1 ++ d2) ++ d3)(k)
= (d1(k) @ d2(k)) @ d3(k)
= d1(k) @ (d2(k) @ d3(k))
= (d1 ++ (d2 ++ d3))(k)

�

Dictionaries are accessed using a partial functionlookup that takes a keyk and a dictionaryd as arguments. When
it finds a matching value,lookup returns the value found and the dictionary that remains after deleting that value.

lookup(k, d) =

{

e, d[k ← l] if d(k) = e :: l
undefined otherwise

We now reinterpret each combinator from the previous section as a dictionary lens and give the definitions of the
new combinatorskeyandmatch. Thekeycombinator is nearly identical tocopy, except that thekeycomponent of
copyis a constant function (returningǫ), while thekeycomponent ofkeyreturns the abstract string.

E ∈ R L ∈ List(P(S))

copyE ∈ [[E]]
[[E]],L
⇐⇒ [[E]]

getc = c

parsec = c, {}
keya = ǫ

createa d = a, d

puta (s, d) = a, d

3.3 Lemma: copyE ∈ [[E]]
[[E]],L
⇐⇒ [[E]].

Proof:
GETPUT: Let c ∈ [[E]] andd ∈ D(L) with s, d′ = (copyE).parsec. Thens = c andd′ = {} by the definition of
(copyE).parse. We calculate as follows:

(copyE).put ((copyE).getc) (s, (d′ ++ d))
= (copyE).put c (c, ({} ++ d))
= (copyE).put c (c, d)
= c, d.

PUTGET: Let a, s ∈ [[E]] andd ∈ D(L) with c, d′ = (copyE).put a (s, d). Thenc = a and(copyE).get c =
(copyE).geta = a, as required.

CREATEGET: Let a, c ∈ [[E]] andd ∈ D(L) with c, d′ = (copyE).createa d. Thenc = a and(copyE).getc =
(copyE).geta = a, as required.

�

E ∈ R L ∈ List(P(S))

keyE ∈ [[E]]
[[E]],L
⇐⇒ [[E]]

getc = c

parsec = c, {}
keya = a

createa d = a, d

puta (s, d) = a, d

3.4 Lemma: keyE ∈ [[E]]
[[E]],L
⇐⇒ [[E]].

Proof:
GETPUT: Identical to the proof forcopyE.

PUTGET: Identical to the proof forcopyE.

CREATEGET: Identical to the proof forcopyE.

�

The refined definition ofconstis also straightforward.

E ∈ R u ∈ Σ∗ v ∈ [[E]] L ∈ List(P(S))

constE u v ∈ [[E]]
[[E]],L
⇐⇒ {u}

getc = u

parsec = c, {}
keya = ǫ

createu d = v, d

putu (s, d) = s, d

3.5 Lemma: constE u v ∈ [[E]]
[[E]],L
⇐⇒ {u}.

Proof:
GETPUT: Let c ∈ [[E]] andd ∈ D(L) with s, d′ = (constE u v).parsec. Thens = c andd′ = {} by the definition
of (constE u v).parse. We calculate as follows:

(constE u v).put ((constE u v).getc) (s, (d′ ++ d))
= (constE u v).putu (c, ({} ++ d))
= (constE u v).putu (c, d)
= c, d.

PUTGET: Let a ∈ {u} ands ∈ [[E]] andd ∈ D(L) with c, d′ = (constE u v).put a (s, d). Thena = u and
(constE u v).getc = u, as required.

CREATEGET: Let a ∈ {u} and d ∈ D(L) with c, d′ = (const E u v).create a d. Then a = u and
(constE u v).getc = u, as required.

�

Concatenation is similar to string lenses, butcreateand put thread the dictionary through the corresponding
sublens functions.

l1 ∈ C1
S1,L
⇐⇒ A1 C1·

!C2

l2 ∈ C2
S2,L
⇐⇒ A2 A1·!A2

l1·l2 ∈ C1·C2
S1×S2,L
⇐⇒ A1·A2

getc1·c2 = (l1.getc1)·(l2.getc2)
parsec1·c2 = (s1, s2), d1 ++ d2

wheresi, di = li.parseci

keya1·a2 = l1.keya1 · l2.keya2

createa1·a2 d1 = c1·c2, d3

whereci, di+1 = li.createai di

puta1·a2 ((s1, s2), d1) = c1·c2, d3

whereci, di+1 = li.putai (si, di)

3.6 Lemma: l1·l2 ∈ C1·C2
S1×S2,L
⇐⇒ A1·A2.

Proof:
GETPUT: Let c ∈ C1·C2 andd ∈ D(L) with s, d′ = (l1·l2).parsec.

SinceC1·
!C2, there is a uniquec1 ∈ C1 andc2 ∈ C2, such thatc1·c2 = c. By the definition of(l1·l2).parsewe

haves = (s1, s2) andd′ = d′1 ++ d′2 wheresi, d
′
i = li.parseci for i ∈ {1, 2}.

Similarly, by the definition of(l1·l2).get we have(l1·l2).get c = a wherea = a1·a2 andai = li.get ci for
i ∈ {1, 2}. Moreover, byA1·

!A2, the stringsa1 ∈ A1 anda2 ∈ A2 are the unique elements of those sets whose
concatenation isa.

We calculate as follows:

(l1·l2).put ((l1·l2).getc) (s, (d′ ++ d))
= (l1·l2).put (a1·a2) ((s1, s2), (d

′
1 ++ d′2 ++ d))

= (c′1·c
′
2), d3

wherec′1, d2 = l1.puta1 (s1, (d
′
1 ++ d′2 ++ d))

andc′2, d3 = l2.puta2 (s2, d2)

By the GETPUT property forl1, we havec′1 = c1 andd2 = d′2 ++ d. Similarly, by the GETPUT property forl2 we
havec′2 = c2 andd3 = d. Putting all these facts together, we have(c′1·c

′
2), d3 = c, d, as required.

PUTGET: Let a ∈ A1·A2 ands = (s1, s2) ∈ S1 × S2 andd1 ∈ D(L). SinceA1·
!A2, there exist unique elements

a1 ∈ A1 anda2 ∈ A2 such that(a1·a2) = a.
Let ci, di+1 = li.put ai (si, di) for i ∈ {1, 2}. By C1·!C2, the stringsc1 ∈ C1 andc2 ∈ C2 are the unique

elements of those sets whose concatenation is(c1·c2).
By the PUTGET property forl1 andl2, we haveli.getci = ai for i ∈ {1, 2}. By the definition of(l1·l2).put, we

have(l1·l2).puta (s, d1) = (c1·c2), d3. Using these facts, we calculate as follows:

(l1·l2).get(c1·c2)
= (l1.getc1)·(l2.getc2)
= a1·a2

= a

as required.

CREATEGET: Let a ∈ A1·A2 andd1 ∈ D. SinceA1·!A2, there exist unique elementsa1 ∈ A1 anda2 ∈ A2 such
that(a1·a2) = a

Let ci, di+1 = li.createai di for i ∈ {1, 2}. By C1·
!C2, the stringsc1 ∈ C1 andc2 ∈ C2 are the unique elements

of those sets whose concatenation is(c1·c2).

By the CREATEGET property forl1 andl2, we haveli.getci = ai for i ∈ {1, 2}. By the definition of(l1·l2).create,
we have(l1·l2).createa s d1 = (c1·c2), d3. Using these facts, we calculate as follows:

(l1·l2).get(c1·c2)
= (l1.getc1)·(l2.getc2)
= a1·a2

= a,

as required. �

Lens concatenation is associative, modulo coercion to basic lenses: even though the skeleton structure of a lens
differentiates(l1·l2)·l3 from l1·(l2·l3), we have(l1·l2)·l3 = l1·(l2·l3).

3.7 Fact: If l1·(l2·l3) ∈ C
S1×(S2×S3),L
⇐⇒ A, then(l1·l2)·l3 ∈ C

(S1×S2)×S3,L
⇐⇒ A andl1·(l2·l3) = (l1·l2)·l3.

Moreover, our combinators do not take advantage of the ability to distinguishS1× (S2×S3) from (S1×S2)×S3.
Thus, we implicitly associate lens concatenation (and the corresponding set-theoretic operations) to the left.

To illustrate the definitions we have seen so far, consider the following dictionary lens:

l$ = keyx∗ · dely∗ · copy(z∗·$)

with l$ ∈ x∗·y∗·z∗·$
S,[]
⇐⇒ x∗·z∗·$

and S = x∗ × y∗ × z∗·$.

(We implicitly coerce a regular expression to its corresponding language in these examples.) Theparsefunction of
l$ breaks apart a string according to the structure of the concrete domain:

l$.parsexxyz$ = (xx, y, z$), {} ++ {} ++ {}

(The dictionary is empty because none of the sublenses use thematchoperator.) Thekeyfunction returns thexx...x
prefix of an abstract string. Thiskeyfunction tells us, for example, that the concrete stringxxyzz$ has the same key
as the abstract stringxxz$, because

l$.key(l$.getxxyzz$) = l$.keyxxzz$ = xx = l$.keyxxz$.

The other components of this lens induce the same functions as in the basic lens semantics.
The iteration combinator is analogous to the concatenationoperator. Itsparsefunction builds a concatenated

dictionary and itsput and create functions thread their dictionary argument (from left to right) through the
corresponding sublens functions.

l ∈ C
S,L
⇐⇒ A C !∗ A!∗

l∗ ∈ C∗
List(S),L
⇐⇒ A∗

getc1 ···cn = (l1.getc1)···(l.getcn)
parsec1 ···cn = [s1, ..., sn], d1 ++···++ dn

wheresi, di = l.parseci

keya1 ···an = l.keya1 ···l.keyan

createa1 ···an d1 = (c1 ···cn), dn+1

whereci, di+1 = l.createai di

puta1 ···an ([s1, ..., sm], d1) = (c1 ···cn), dn+1

whereci, di+1 =















l.putai (si, di)
i ∈ {1, ...,min(m, n)}

l.createai di

i ∈ {m + 1, ..., n}

3.8 Lemma: l∗ ∈ C∗
List(S),L
⇐⇒ A∗.

Proof:
GETPUT: SinceC !∗, for all c ∈ C∗, there is a uniquen and sequencec1, . . . , cn, such thatc1 ···cn = c and each
ci ∈ C. In this proof, we will use the notationlen(c) for this unique valuen and the notationc[i] for the unique
substringci.

Claim: For all c ∈ C∗, d ∈ D(L), if n = len(c) and si, di = l.parsec[i] for i ∈ {1, ..., n}, then for all
j ∈ {1, ..., n},

(l∗).put ((l∗).getc) ([s1, ..., sn], (d1 ++···++ dn ++ d)) = c[1]···c[j] · c′, d

where
c′ = π1((l∗).put ((l∗).get(c[j + 1]···c[n])) ([sj+1, ..., sn], (dj+1 ++···++ dn ++ d))).

First note that this claim implies GETPUT (letting j = n). Now we prove this claim by induction onlen(c).

Case: Casen = len(c) = 0.

Then

(l∗).put ((l∗).getǫ) ([s1, ..., sn], (d1 ++···++ dn ++ d))

= (l∗).put ǫ ([], d)

= ǫ, d

and

π1((l∗).put ((l∗).get(c[j + 1]···c[n])) ([sj+1, ..., sn], (dj+1 ++···++ dn ++ d)))

= π1((l∗).put ((l∗).getǫ) ([], d))

= π1((l∗).put ǫ ([], d))

= π1(ǫ, d)

= ǫ

as required.

Case: Casen = len(c) > 0.

Then, lettingj be an arbitrary value from{1, ...n},

(l∗).put ((l∗).get(c[1]···c[n])) ([s1, ..., sn], (d1 ++···++ dn ++ d))

= (l∗).put (l.getc[1] · ((l∗).get(c[2]···c[n]))) ([s1, ..., sn], (d1 ++···++ dn ++ d))

(by the definition of(l∗).get)

= c1 · (l∗).put ((l∗).get(c[2]···c[n])) ([s2, ..., sn], d′2)

wherec1, d
′
2 = l.put (l.getc[1]) (s1, (d1 ++···++ dn ++ d))

(by the definition of(l∗).putand byA!∗)

= c[1] · (l∗).put ((l∗).get(c[2]···c[n])) ([s2, ..., sn], (d2 ++···++ dn ++ d))

(by the law GETPUT on l)

= c[1] · (c[2]···c[j]) · c′, d

wherec′ = π1((l∗).put ((l∗).get(c[j + 1]···c[n])) ([sj+1, ..., sn], (dj+1 ++···++ dn ++ d)))

(by the IH),

as required.

PUTGET: Let a = a1 ···an ∈ A∗ ands = s1 ···sm ∈ List(S), with ai ∈ A andsj ∈ S. Let d1 ∈ D(L). For every
k ∈ {1, ..., n} define

ck, dk+1 =

{

l.putak (sk, dk) if k ≤ m

l.createak dk if k > m.

In either case we havel.getck = ak, by PUTGET if k ≤ m and by CREATEGET if k > m.
Using these facts and the definition of(l∗).get, we calculate as follows:

(l∗).get(c1 ···cn)
= (l.getc1)···(l.getcn)
= a1 ···an

= a,

as required.

CREATEGET: Follows from the previous case, as(l∗).createa d = (l∗).puta ({}, d).

�

The most interesting new combinator ismatch. Its get component passes off control to the sublensl. Theput
component matches up its abstract argument with a corresponding item in the dictionary and supplies both to the
put function ofl.

l ∈ C
S,L
⇐⇒ A

〈l〉 ∈ C
{�},S::L
⇐⇒ A

getc = l.getc
parsec = �, {l.key(l.getc) 7→ [l.parsec]}
keya = l.keya

createa d =















π1(l.puta(sa, da)), d
′

if (sa, da), d
′ = lookup(l.keya, d)

π1(l.createa {}), d
if lookup(l.keya, d) undefined

puta (�, d) =















π1(l.puta (sa, da)), d
′

if (sa, da), d
′ = lookup(l.keya, d)

π1(l.createa {}), d
if lookup(l.keya, d) undefined

We prove that this combinator is a dictionary lens at the typedescribed by its typing rule, after stating a key
lemma about thelookup(·, ·) function.

3.9 Lemma: Let d ∈ DS::L, k ∈ K, e ∈ S ×D(L). Then

lookup(k, {k 7→ [e]} ++ d) = e, d.

Proof: Since

({k 7→ [e]} ++ d)(k)

= {k 7→ [e]}(k) @ d(k)

= [e] @ d(k)

= e :: d(k),

we have

lookup(k, {k 7→ [e]} ++ d)

= e, ({k 7→ [e]} ++ d)[k ← d(k)]

= e, d.

�

3.10 Lemma: 〈l〉 ∈ C
{�},S::L
⇐⇒ A.

Proof:
GETPUT: Let c ∈ C andd ∈ D(L) ands, d′ = (〈l〉).parsec. By the definition of(〈l〉).parsewe haves = � and
d′ = {l.key(l.getc) 7→ [(sc, dc)]} wheresc, dc = l.parsec. By Lemma 3.9 we have

lookup(l.key(l.getc), {l.key(l.getc) 7→ [(sc, dc)]} ++ d) = (sc, dc), d

We then may calculate

(〈l〉).put ((〈l〉).getc) (�, ({l.key(l.getc) 7→ [(sc, dc)]} ++ d))

= (〈l〉).put (l.getc) (�, ({l.key(l.getc) 7→ [(sc, dc)]} ++ d))

= π1(l.put (l.getc) (sc, dc)), d

(by the equation above)

= π1(c , {}), d

(by GETPUT for l)

= c, d

Noting that(〈l〉).parsec = (�, {l.key(l.getc) 7→ [l.parsec]}), this proves GETPUT.

PUTGET: Let a ∈ A ands = � andd ∈ D(L) with c = π1((〈l〉).puta s d). We analyze two cases.

Case: lookup(a, d) = (sk, dk), d
′:

Then by the definition of(〈l〉).put we havec = π1(l.puta (sk, dk)). We then calculate

(〈l〉).getc
= l.getc
= a

The last line follows by the PUTGET property forl.

Case: lookup(a, d) undefined:

Then by the definition of(〈l〉).put we havec = π1(l.createa {}). We then calculate

(〈l〉).getc
= l.getc
= a

CREATEGET: Since(〈l〉).createa d = (〈l〉).puta � d, the argument is identical to the proof of PUTGET.

�

To illustrate the operation ofmatch, consider the lens〈l$〉∗. It has the samegetbehavior asl$∗, but itsput function
restores theys to each chunk using the association induced by keys rather than by position. Let us calculate the result
produced by the following application of the derivedput function:

〈l$〉∗.putxxzzz$x$ xyz$xxyyzz$

Here, the update to the abstract string has swapped the orderof the chunks and changed the number ofzs in each
chunk. Theparsefunction produces a dictionary structure that associates (the parse of) each chunk to its key:

〈l$〉∗.parsexyz$xxyyzz$

= [�,�],

{

x 7→ [((x, y, z$), {})],
xx 7→ [((xx, yy, zz$), {})]

}

Each step invokes theputof the match lens, which locates a concrete chunk from the dictionary and invokes theput
of l$. The final result illustrates the “resourcefulness” of thislens:

〈l$〉∗.putxxzzz$x$ xyz$xxyyzz$ = xxyyzzzxy

By contrast, theputcomponent of the basic lensl$∗ is not resourceful—it restores theys to each chunk by position:

l$
∗.putxxzzzx xyz$xxyyzz$ = xxyzzzxyy

The final operator forms the union of two dictionary lenses:

l1 ∈ C1
S1,L
⇐⇒ A1

l2 ∈ C2
S2,L
⇐⇒ A2

C1 ∩ C2 = ∅ S1 ∩ S2 = ∅

l1 | l2 ∈ C1 ∪ C2
S1∪S2,L
⇐⇒ A1 ∪A2

getc =

{

l1.getc if c ∈ C1

l2.getc if c ∈ C2

parsec =

{

l1.parsec if c ∈ C1

l2.parsec if c ∈ C2

keya =

{

l1.keya if a ∈ A1

l2.keya if a ∈ A2\A1

createa d =

{

l1.createa d if a ∈ A1

l2.createa d if a ∈ A2\A2

puta (s, d) =















l1.puta (s, d) if a, s ∈ A1×S1

l2.puta (s, d) if a, s ∈ A2×S2

l1.createa d if a, s ∈ (A1\A2)×S2

l2.createa d if a, s ∈ (A2\A1)×S1

3.11 Lemma: l1 | l2 ∈ (C1 ∪ C2)
(S1∪S2),L
⇐⇒ (A1 ∪A2).

Proof:
GETPUT: Let c ∈ C1 ∪ C2 andd ∈ D(L) with s, d′ = (l1 | l2).parsec. We analyze two cases.

Case: Casec ∈ C1:

Then(l1 | l2).parsec = l1.parsec and therefores ∈ S1. We calculate as follows:

(l1 | l2).put ((l1 | l2).getc) (s, (d′ ++ d))
= (l1 | l2).put (l1.getc) (s, (d′ ++ d))
= l1.put (l1.getc) (s, (d′ ++ d))

(sinces ∈ S1 andl1.getc ∈ A1)
= c, d

The last line follows from the GETPUT property forl1.

Case: Casec ∈ C2:

Symmetric to the previous case.

PUTGET: Let a ∈ (A1 ∪A2) ands ∈ (S1 ∪ S2) andd ∈ D(L). We analyze four subcases.

Case: Case:a ∈ A1 ands ∈ S1

We have
(l1 | l2).get(π1((l1 | l2).puta s d))

= (l1 | l2).get(π1(l1.puta (s, d)))
(sincea ∈ A1 ands ∈ S1)

= l1.get(π1(l1.puta (s, d)))
(sinceπ1(l1.puta (s, d)) ∈ C1)

= a

The last line follows from the PUTGET property forl1.

Case: Casea ∈ A2 ands ∈ S2:

Symmetric to the previous case.

Case: Casea ∈ A1 \A2 ands ∈ S2:

We have
(l1 | l2).get(π1((l1 | l2).puta s d))

= (l1 | l2).get(π1(l1.createa d))
(sincea ∈ A1 \A2 ands ∈ S2)

= l1.get(π1(l1.createa d))
(sinceπ1(l1.createa d) ∈ C1)

= a

The last line follows from the CREATEGET property forl1.

Case: Casea ∈ A2 \A1 ands ∈ S1:

Symmetric to the previous case.

CREATEGET: Let a ∈ (A1 ∪A2) andd ∈ D(L). We analyze two subcases.

Case: Casea ∈ A1:

We have
(l1 | l2).get(π1((l1 | l2).createa d))

= (l1 | l2).get(π1(l1.createa d))
(sincea ∈ A1)

= l1.get(π1(l1.createa d))
(sinceπ1(l1.createa d) ∈ C1)

= a

The last line follows from the CREATEGET property forl1.

Case: Casea ∈ A2 \A1:

Symmetric to the previous case.

�

This definition is analogous to the union operator for basic string lenses. Because theput function takes a skeleton
and dictionary rather than a concrete string (as the basic lensput does), the last two cases select a branch using the
skeleton value. The typing rule ensures that skeleton domains are disjoint so that this choice is well-defined. The
union combinator is associative, but not commutative (for the same reason that the basic lens is not).

One interesting difference from the basic lens is that thecreatefunction takes a dictionary argument, which can
be used to transfer information from one branch to the other.The following example illustrates why this is useful.
Definel$$ = 〈l$〉 | 〈l$〉·〈l$〉. The typing rules give us the following facts:

l$$ ∈ EC | EC ·EC
{�,(�,�)},[S]
⇐⇒ EA | EA·EA,

where EC = x∗·y∗·z∗·$ EA = x∗·z∗·$

S = x∗ × y∗ × z∗·$.

Now considerc1, c2 ∈ EC anda1, a2 ∈ EA, whereai = l$.getci. We havel$$.getc1·c2 = a1·a2. A natural way
for theput function to reflect an update ofa1·a2 to a2 on the concrete string would be to producec2 as the result.
However, since the update involves crossing from one branchof the union to the other, the basic lens version cannot
achieve this behavior—crossing branches always triggers acreatewith defaults. For example, withc1 = xyz$,
c2 = xxyyzz$, a1 = xz$, anda2 = xxzz$, we have

(l$ | l$·l$).putxxzz$ xyz$xxyyzz$ = xxzz$.

The dictionary lens version, however, is capable of carrying information from the concrete string via its dictionary,
even when the update changes which branch is selected. On thesame example, we have

l$$.putxxzz$ xyz$xxyyzz$ = xxyyzz$,

as we might have hoped.
The union combinator is naturally associative.

3.12 Fact: For all l1 ∈ C1
S1,L
⇐⇒ A1, l2 ∈ C2

S2,L
⇐⇒ A2, and l3 ∈ C3

S3,L
⇐⇒ A3 we have(l1 | l2) | l3 ∈

C1 ∪ C2 ∪ C3
S1∪S2∪S3,L
⇐⇒ A1 ∪ A2 ∪ A3 if and only if l1 | (l2 | l3) ∈ C1 ∪ C2 ∪ C3

S1∪S2∪S3,L
⇐⇒ A1 ∪ A2 ∪ A3.

Moreover,(l1 | l2) | l3 = l1 | (l2 | l3).

4. Quasi-Obliviousness

As the examples above demonstrate, dictionary lenses can bewritten to work well in situations where the updates to
abstract strings involve reordering. In particular, the dictionary lens version of the composers lens in the introduction
behaves well with respect to reordering, while the originalbasic lens version does not. In this section, we develop
a refinement of the semantic space of basic lenses that makes such comparisons precise. We first define a space
of quasi-obliviouslenses and show how it can be used to derive intuitive properties of lenses operating on ordered
data. We then show how it can be used more generally to succinctly characterize two important special cases of
basic lenses—oblivious and very well behaved lenses.

Quasi-obliviousness is an extensional property of lenses—i.e., a property of the way they transform entire abstract
and concrete structures. When discussing it, there is no need to mention internal structures like skeletons and
dictionaries. We therefore return in this section to the simpler vocabulary of basic lenses, keeping in mind that
a dictionary lensl can be converted into a basic lensl as described in Section 3.

Let l be a basic lens fromC to A and let∼ be an equivalence relation onC. Thenl is quasi-obliviouswith respect
to∼ if it obeys the following law for everyc, c′ ∈ C anda ∈ A:

c ∼ c′

l.put a c = l.put a c′
(EQUIVPUT)

Note that the law has equality rather than∼ in the conclusion; this is because theput must propagate all of the
information contained ina to satisfy PUTGET. In particular, the order of chunks in the result of theput is forced by
their order ina.

Like the basic lens laws, EQUIVPUT is a simple condition that guides the design of lenses by specifying what
effect they must have in specific cases where the correct behavior is clear. One way to understand its effect is

to notice how it extends the range of situations to which the GETPUT law applies—GETPUT only constrains the
behavior of theput on the unique abstract string generated from a concrete string byget; with EQUIVPUT, it must
have the same behavior on the entire equivalence class.

Here is an example demonstrating how EQUIVPUT and GETPUT can be used together to derive an useful property
of the put component of a lens, without any additional knowledge of howput operates. LetC andA be regular
languages and suppose that we can identify thechunksof every string inC and thekeyof each chunk. For example,
in the composers lens, the chunks are the lines and the keys are the names of the composers. These chunks and keys
induce an equivalence relation onC where two stringsc andc′ are equivalent if they can be obtained from each
other by akey-respecting reorderingof chunks—i.e., by repeatedly swapping chunks such that therelative ordering
of chunks with the same key is preserved. Write∼ for this equivalence relation. Now letl be a quasi-oblivious
lens with respect to∼ and suppose that the notions of chunks and keys onC are carried by theget function toA

in a natural way, and that every key-respecting reordering on A can be generated by applying theget function to a
correspondingly reordered string inC. (This is the case with our dictionary lens in the composer example: chunks in
the abstract codomain are lines, the composer names are preserved by thegetfunction, and the order of the abstract
lines after aget is the same as the order of the lines in the concrete structure.) Consider an arbitrary concrete string
c, an abstract stringa = getc, and an updated abstract stringa′ that is obtained by reordering chunks ina. Let us
calculate the result of applyingput to a′ andc. By the above hypothesis, sincea′ was obtained by reordering the
chunks ina, it is equal to thegetof c′ for somec′ obtained fromc by the corresponding reordering of chunks. By
the GETPUT law, applying theput function toa′ andc′ is c′; by EQUIVPUT, applying theput function toa′ andc

also yieldsc′. Thus, quasi-obliviousness lets us derive an intuitive result: theput function translates reorderings of
chunks in the abstract string as corresponding reorderingson the concrete string.

The EQUIVPUT law is useful both as a constraint on the design of lens primitives (in particular, dictionary
lenses are designed with this principle in mind, for an equivalence based on reordering chunks) and as a guide
for developing intuitions. Quasi-obliviousness does not,however, provide a complete specification of the correct
handling of ordering in bidirectional languages. For example, it does not say what happens when the update to the
abstract string deletes chunks or edits the value of a key. Tocapture such cases, one could formulate a condition
stipulating that theput function must align chunks by key. Specifying this condition, however, requires talking about
the sublens that operates on the chunks, which implies a syntactic representation of lenses analogous to dictionary
lenses. We thus prefer to only consider the extensional law,even though it provides guarantees in fewer situations.

By design, each dictionary lens is quasi-oblivious with respect to an equivalence relation that can be read off from
its syntax. The equivalence identifies strings up to key-respecting reorderings of chunks, where chunks are denoted
by the occurrences of angle brackets, and keys by the sections each chunk marked using thekey combinator. To see
that every dictionary lens is quasi-oblivious with respectto this equivalence, observe thatparsemaps strings that
are equivalent in this sense to identical skeletons and dictionaries, and recall that theput function for a dictionary
lens (when viewed as a basic lens) wraps an invocation ofparse, and ofput, which operates on this skeleton and
dictionary directly. It follows thatputbehaves the same on equivalent concrete strings.

Returning to the composers example, we can see that why the basic lens is bad and the dictionary lens is good:
the equivalence the programmer had in mind forboth versions was the one that can be read off from the second
one—every line is a chunk, and the relative order of lines with different names should not affect how dates are
restored by theput function. The first version of the lens, which operates positionally, is not quasi-oblivious with
respect to this equivalence.

So far, we have focused on equivalence relations which are key-respecting reorderings of chunks. More generally,
we can consider arbitrary equivalences onC. In the rest of this section, we investigate some propertiesof this more
general view of quasi-oblivious lenses.

For a given basic lensl, there are, in general, many equivalence relations∼ such thatl is an quasi-oblivious
lens with respect to∼. We writeCl(∼) for the set of equivalence classes (i.e., subsets of the concrete domain) of
∼. Every lensl is trivially quasi-oblivious with respect to equality, thefinest equivalence relation onC, and the

relation∼max, defined as the coarsest equivalence for whichl satisfies EQUIVPUT (c∼maxc
′ iff ∀a. puta c = puta c′).

Between equality and the coarsest equivalence, there is a lattice of equivalence relations.
Given an equivalence relation, every concrete elementc may be characterized by the data preserved in the abstract

codomain and the rest of the data shared by every other view ofthe equivalence class containingc. That is, given
Ci ∈ Cl(∼) and an abstract viewa, there is at most one viewc such thatc ∈ Ci andl.getc = a. Conversely, if two
different concrete views map to the samea, then they must belong to different equivalence classes.

In the original lens paper (Foster et al. 2007b), two specialclasses of lenses are discussed. A lensl ∈ C ⇐⇒ A

is calledobliviousif its put function ignores its concrete argument completely. A lensl is very well behavedif the
effect of twoputs in sequence just has the effect of the second—i.e., ifl.put a (l.put a′ c) = l.put a c for everya, a′,
andc. (Very well behavedness is a strong condition and imposing it on all lenses would prevent writing many useful
transformations. For example, note that neither variant ofthe composers lens is very well behaved: if we remove
a composer and add the same composer back immediately after,the birth and death dates will be the default ones
instead of the original ones. This may be seen as unfortunate, but the alternative is disallowing deletions!)

Interestingly, both of these conditions can be formulated in terms of∼max. A lens l is oblivious iff the coarsest
relation ∼max satisfying EQUIVPUT is the total relation onC. Moreover, l is very well behaved iff∀Ci ∈
Cl(∼max). l.get Ci = A. This condition puts the abstract codomain in a bijection with each equivalence class of
∼ and forces the operation of theput function to use the information in the abstract and concretestructures as
follows: the concrete structure identifies an equivalence classCi; the information contained in the abstract structure
determines an element ofCi. This turns out also to be equivalent to the classical notionof view update translation
under “constant complement” (Bancilhon and Spyratos 1981).

5. Boomerang

Programming with combinators alone is low-level and tedious. To make lens programing more convenient, we have
implemented a high-level programming language calledBoomerangon top of our core primitives.

Boomerang’s architecture is simple: dictionary lens combinators are embedded in a simply typed functional
language (we use the syntactic conventions of OCaml) built over the base typesstring, regexp, andlens. The
language has all of the usual constructs: functions andlet-definitions,4 as well as constants for using dictionary
lenses with the interface of a basic lens (as described in Section 3):

get : lens -> string -> string

put : lens -> string -> string -> string

create : lens -> string -> string

Evaluation in Boomerang is logically divided into two levels, in the style of Algol 60. At the first level, expressions
are evaluated using the standard strategy of a call-by-value λ-calculus. This, in turn, may trigger the assembly
(and type checking!) of a new dictionary lens value. The run-time representation of a dictionary lens value is a
record of functions (representing theget, parse, key, create, andput components) and several finite-state automata
(representing the concrete, abstract, skeleton, and dictionary components of the type); when a lens is built, the type
checker checks the conditions mentioned in the typing rulesusing operations on these automata.

Using libraries and user-defined functions, it is possible to assemble large combinator programs quite rapidly.
For example, the following user-defined function encapsulates the low-level details of escaping characters in XML.
It takes a regular expressionexcl of excluded characters, and yields a lens mapping between raw and escaped
PCDATA characters:

let xml_esc (excl:regexp) =

copy ([^&<>\n] - excl)

| ">" <-> ">"

| "<" <-> "<"

| "&" <-> "&"

4 Although it is semantically straightforward to define lenses by recursion (see Foster et al. (2007b)), Boomerang does not support recursive
definitions as it would then be possible to define lenses with context-free types.

(Whenxml_esc is applied, the value passed forexcl typically contains the “separators” of fields in the format;
these are used by the type checker, e.g., to verify unambiguous iteration.)

Similarly, the next two functions handle the details of processing atomic values and entire fields in BibTeX
and RIS-formatted bibliographic databases. They are defined in a context wherews, quot_str, brac_str, and
bare_str are bound to the lenses used to process whitespace, quoted strings, strings enclosed in curly braces, and
bare strings respectively.

let val (ld:string) (r:regexp) (rd:string) =

del (ws . "=" . ws . ld) .

copy r .

del (rd . ws . "," . ws . "\n")

let field (bibtex:string) (ris:string) =

let quot_val = val "\"" quot_str "\"" in

let brac_val = val "{" brac_str "}" in

let bare_val = val "" bare_str "" in

let any_val = quot_val | brac_val | bare_val in

ws . bibtex <-> ris . any_val . ins "\n"

Theval function is used to tidy BibTeX values; when it is applied to aleft delimiter stringld, a regular expression
describing the valuer, and a right delimiter stringrd, it produces a dictionary lens that strips out the “=” character,
whitespace, and delimiters. Thefield function takes as arguments strings representing the name of a BibTeX field
(e.g.title) and the corresponding RIS field (T1) and produces a dictionary lens that maps between entire key-value
pairs in each format.

The most significant challenges in implementing Boomerang come from the heavy use of regular expressions in
its type system. Since the types of dictionary lenses involve regular languages, Boomerang’s type checker needs
to be able to decide equivalence, inclusion, and emptiness of regular languages, which are all standard. However,
standard automata libraries do not provide operations for deciding unambiguous concatenation and iteration, so
we implemented a custom automata library for Boomerang. Ourlibrary uses well-known techniques to optimize
the representation of transition relations, and to recognize several fast paths in automata constructions. Even with
these optimizations, as several operations use product constructions, the memory requirements can be significant.
In our experience, performance is good enough for examples of realistic size, but we plan to investigate further
optimizations in the future.

Because the type analysis performed by the dictionary lens type checker is so precise, many subtle errors—
overlapping unions, ambiguous concatenations, etc.—are detected early. Boomerang supports explicit programmer
annotations of dictionary lens types, written in the usual way aslet e : (C <-> A). It also has mechanisms
for printing out inferred types and generating counterexamples when type checking fails. We have found all these
features incredibly helpful for writing, testing, and debugging large lens programs.5

6. Experience

We have built Boomerang lenses for a variety of real-world formats, including an address book lens that maps
between vCard, CSV, and XML; a lens that maps BibTeX and RIS bibliographic databases; and lenses for calculating
simple ASCII views of LaTeX documents and iTunes libraries represented in XML as Apple Plists. Our largest
Boomerang program converts between protein sequence databases represented in ASCII using the SwissProt format
and XML documents conforming to the UniProtKB schema. For example, the following snippet of a SwissProt
entry

OS Solanum melongena (Eggplant) (Aubergine).

OC Eukaryota; Viridiplantae.

OX NCBI_TaxID=4111;

5 And small ones! All the lenses and examples typeset in a typewriter font in this document were checked and run within the Boomerang
system.

is mapped to a corresponding UniProtKB XML value:

<name type="scientific">Solanum melongena</name>

<name type="common">Eggplant</name>

<name type="synonym">Aubergine</name>

<dbReference type="NCBI Taxonomy" key="1" id="4111"/>

<lineage>

<taxon>Eukaryota</taxon>

<taxon>Viridiplantae</taxon>

</lineage>

Like many textual database formats, SwissProt databases are lists of entries consisting of tagged lines; our lens
follows this structure. Entries are processed by thematchcombinator as distinct chunks, so that the information
discarded by theget(e.g., metadata about each entry’s creation date) can be restored correctly when updates involve
reorderings. The identifier line provides a natural key. Other lines are processed using lenses specifically written
for their data (of course, we factor out common code when possible). Most of these consist of simple filtering
and reformatting (and swapping—see Section 8), and are therefore straightforward to write as dictionary lens
combinators.

Interestingly, as we were developing this lens, the Boomerang type checker uncovered a subtle ambiguity in one
of the lines that stems from the use of both “,” and “;” as separators. Some implicit conventions not mentioned in
the specification avoid this ambiguity in practice (and we were able to revise our code to reflect these conventions).
The precision of Boomerang’s type system makes it a very effective tool for debugging specifications!

7. Related Work

Basic lenses were the starting point for this work. The original paper (Foster et al. 2007b) includes an extensive
survey of the connections between basic lenses and the view update problem in the database literature. Basic lenses
for relational structures, using primitives based on relational algebra, have also been developed (Bohannon et al.
2006). The combinators for tree lenses described in the firstlens paper can be used to write lenses for lists encoded
as trees, and all of the problems with ordered data describedin the present work arise in that setting too. (These
problems do not come up in the relational setting, since the structures handled there are unordered.)

Meertens’s formal treatment ofconstraint maintainersfor user interfaces (Meertens 1998, Section 5.3) recognizes
the problem we are dealing with in this paper when operating on lists, and proposes a solution for the special case of
“small updates” specified by edit operations, using a network of constraints between list entries. The idea of using
constraints between concrete and abstract structures is related to our use of keys in dictionary lenses, but handling
updates by translating edit operations represents a significant departure from the approach used in lenses, where
“updates” are not given as operations, but by the updated value itself. The treatment of ordering for lists and trees
in the bidirectional languages X and Inv (Hu et al. 2004; Mu etal. 2004), comes closest to handling the sorts of
“resourceful updating” situations that motivate this work. Their approach is based on Meertens’s ideas. As in his
proposal, updates to lists in X are performed using edit operations. But rather than maintaining a correspondence
between elements of concrete and abstract lists, the semantics of the edit operation is a function yielding a tagged
value indicating which modification was performed by the edit. The structure editor described in (Hu et al. 2004)
based on X does handle singleinsertanddeleteoperations correctly by propagating these modification tags locally in
lists. However, themoveoperation is implemented as adeletefollowed by aninsert. This means that the association
between the location of the moved element in the concrete andabstract lists is not maintained, and so moved data is
populated with default values at the point of insertion; e.g., our composers example is not handled correctly.

There is a large body of work on bidirectional languages for situations in which round-trips are intended to be
bijective modulo “ignorable information” (such as whitespace). XSugar (Brabrand et al. 2007) is a bidirectional
language that targets the special case when one structure isan XML document and the other is a string. Trans-
formations are specified using pairs of intertwined grammars. A similar bidirectional language, biXid (Kawanaka
and Hosoya 2006), operates just on XML data. The PADS system (Fisher and Gruber 2005) makes it possible to

generate a data type, parser, and pretty printer for an ad-hoc data formats from a single, declarative description.
PADS comes with a rich collection of primitives for handlinga wide variety of data including characters, strings,
fixed-with integers, floating point values, separated lists, etc. Kennedy’s combinators (2004) describe pickler and
unpicklers. Benton (2005) and Ramsey (2003) both describe systems for mapping between run-time values in a host
language and values manipulated by an embedded interpreter. In all of these systems, as round-trips are intended to
be essentially bijective, the problems with reordering that our dictionary lenses are designed to solve do not come
up.

JT (Ennals and Gay 2007) synchronizes programs written in different high level languages, such as C and Jekyll,
an extension of C with features from ML. JT relies on a notion of distance to decide how to propagate modifications,
allowing the detection of non local edits such as the swap of two functions. The synchronization seems to work well
in many cases but there is no claim that the semantics of the synchronized programs are the same.

Recently, Stevens (2007) has applied the ideas of basic lenses in the context ofmodel transformations(leaving
aside issues of ordering, for the moment, though this is a goal for future work).

Our lens combinators are based on finite-state transducers,which were first formulated as multitape automata by
Scott and Rabin (1959). Languages based on finite-state automata have been developed, largely in the area of natural
language processing; the collection edited by Roche and Schabes gives a survey (1996). Mechanized checking for
string processing languages that, like Boomerang, have type systems based on regular automata have also been
studied (Tabuchi et al. 2002).

8. Extensions and Future Work

This final section presents some extensions to the basic design described in previous sections—including both ideas
we have already implemented in Boomerang and ones we leave for future work. We discuss a range of topics
including additional combinators, implementation optimizations, and stronger semantic constraints.

We first consider extensions to the set of operators, starting with sequential composition. Extending the grammar
of skeletons with a new form of pairs,〈S1, S2〉, and writingX ⊗ Y for {〈x, y〉 | x ∈ X, y ∈ Y }, we can define the
sequential composition ofl1 andl2 as follows.

l1 ∈ C
S1,L
⇐⇒ B l2 ∈ B

S2,L
⇐⇒ A

l1 ; l2 ∈ C
S1⊗S2,L
⇐⇒ A

getc = l2.get(l1.getc)
parsec = 〈s1, s2〉, (d2 ++ d1)

wheres1, d1 = l1.parsec

ands2, d2 = l2.parse(l1.getc)
keya = l2.keya

createa d = c, d2

whereb, d1 = l2.createa d

andc, d2 = l1.createb d2

puta (〈s1, s2〉, d) = c, d2

whereb, d1 = l2.puta (s2, d)
andc, d2 = l1.put b (s1, d2)

8.1 Lemma: l1 ; l2 ∈ C
S1⊗S2,L
⇐⇒ A.

Proof:
GETPUT: Let c ∈ C andd ∈ D(L) with (〈s1, s2〉, d

′) = (l1 ; l2).parsec. Then by the definition of(l1 ; l2).parse
we haved′ = d′2 ++ d′1 wheres1, d

′
1 = l1.parsec ands2, d

′
2 = l2.parse(l1.getc).

Let a ∈ A with a = (l1 ; l2).getc. Thena = l2.getb whereb = l1.getc.

Using these facts, and the definition of(l1 ; l2).put, we calculate as follows:

(l1 ; l2).put ((l1 ; l2).getc) (〈s1, s2〉, (d
′ ++ d))

= (l1 ; l2).put (l2.get(l1.getc)) (〈s1, s2〉, (d′2 ++ d′1 ++ d))
= l1.put b′ (s1, f)

whereb′, f = l2.put (l2.get(l1.getc)) (s2, (d
′
2 ++ d′1 ++ d))

By the GETPUT property forl2, we haveb′ = l1.getc andf = (d′1 ++ d). Then, by the GETPUT property forl1 we
have

l1.put b′ (s1, f)
= l1.put (l1.getc) (s1, (d

′
1 ++ d))

= c, d

as required.

PUTGET: Let a ∈ A and〈s1, s2〉 ∈ S1 ⊗ S2 andd ∈ D(L). We calculate as follows:

(l1 ; l2).puta (〈s1, s2〉, d)
= c, d2

wherec, d2 = l1.put b (s1, d1)
andb, d1 = l2.puta (s2, d)

By the PUTGET property forl1 andl2 we havel1.getc = b andl2.getb = a. We calculate as follows:

(l1 ; l2).getc
= l2.get(l1.getc)
= l2.getb
= a,

as required.

CREATEGET: Let a ∈ A andd ∈ D(L). We calculate as follows:

(l1 ; l2).createa d

= c, d2

wherec, d2 = l1.createb d1

andb, d1 = l2.createa d

By the CREATEGET property forl1 andl2 we havel1.getc = b andl2.getb = a. We calculate as follows:

(l1 ; l2).getc
= l2.get(l1.getc)
= l2.getb
= a,

as required.

�

Sequential composition is very useful in practice when somepreprocessing of data is needed so that every
chunk with the same information actually belongs to the sameregular language. For instance, suppose that the
concrete language is a concatenation of substrings belonging tox∗ · y∗ · $ · z∗ followed by a separator “#” and then
a concatenation of substrings belonging tox∗ · y∗ · z∗ · $. If we want to ignore the position of the symbol$ and

process these substrings uniformly as chunks, allowing reordering to occur freely between any chunk, we can use
the following lens:

l# =
(copy(x∗·y∗) · del$ · copyz∗ · ins$)∗ · copy#·

(copy(x∗·y∗·z∗·$))∗;
〈l$〉∗ · copy# · 〈l$〉∗

With c = xy$zxxyy$zz#zzz$xxxyyy$, we have

l#.getc = xz$xxzz$#zzzxxx

l#.putxxxzzz$#xxzz$ c = xxxyyy$zzz#xxyyzz$

as desired. However, the interactions of sequential composition with parsing and dictionaries are somewhat tricky
because, in general, each lens in a composite can have its ownnotion of chunk. Thus, we leave a full investigation
of the composition operator as future work.

Thegetcomponents of the string lens combinators we have described—copyandconstclosed under the regular
operators and composition—are all expressible as standardone-way finite state transducers. This class contains
many useful transformations, powerful enough to express a large collection of examples, but has a fundamental
limitation: the restriction to finite state means that it is impossible for a lens to “remember” arbitrary amounts of
data. For example, with the basic combinators, we cannot write a variant of the composers example where the order
of the name and nationality are inverted in the view:

"Finnish, Jean Sibelius

American, Aaron Copland"

Lifting this restriction poses no semantic problems, and the actual set of dictionary lenses implemented in
Boomerang includes primitives for swapping and sorting arbitrary data. For example, the combinatorswapl1 l2
swaps the views computed by thegetfunctions—i.e.,c1·c2 maps to(l2.getc2)·(l1.getc1)—and unswaps the results
computed by theput functions.

l1 ∈ C1
S1,L
⇐⇒ A1 C1·

!C2

l2 ∈ C2
S2,L
⇐⇒ A2 A2·!A1

swapl1 l2 ∈ C1·C2
S1×S2,L
⇐⇒ A2·A1

getc1·c2 = (l2.getc2)·(l1.getc1)
parsec1·c2 = (s1, s2), d2 ++ d1

wheresi, di = li.parseci

keya2·a1 = l2.keya2 · l1.keya1

createa2·a1 d1 = c1·c2, d3

wherec2, d2 = l2.createa2 d1

andc1, d3 = l1.createa1 d2

puta2·a1 ((s1, s2), d1) = c1·c2, d3

wherec2, d2 = l2.puta2 (s2, d1)
wherec1, d3 = l1.puta1 (s1, d2)

A lens that computes the above transformation for a single composer is the following:

swap (key ALPHA)

(del (", " . YEARS . ", ") . ALPHA . ins ", ")

Swap and other related primitives are used critically in thelenses for real-world data that we have built, including
the BibTeX and SwissProt lenses. Building on swap and union,we have also defined lenses for handling simple

forms of sorting: e.g., where the concrete domain is the interleaving of a list of regular languages and the abstract
codomain has the languages in list order. A related generalization of the iteration combinator yields another kind of
sorting. It partitions a sequence by moving elements that donot belong to a given regular expression to the end.

We have also implemented a generalized version of thematchcombinator. The lens described in Section 3 uses
a single dictionary structure to match concrete chunks withpieces of the abstract string having the same key. This
matching is performed globally across the entire concrete string. Nested match combinators provide one way to
limit the scope of matching, but in other situations, it is convenient to use matchable regions with several distinct
sorts, and to have the matching of chunks with different sorts kept separate. In our implementation, we generalize
the design described above by fixing a setT of string “tags”, and associating each〈l〉 combinator to a tag. The type
D of dictionaries is similarly generalized from finite maps from keysK to lists, to finite maps from tagsT to K to
lists. This allows us to express transformations in which different pieces of the input and view are matched globally,
using different dictionaries.

Thus far, we have assumed that keys are generated by concatenating the non-empty substrings generated by the
key combinator. In some situations it is useful to ignore parts of the key (e.g., with nested matches), or to add a fixed
string to a key (e.g., to separate keys that are concatenated). Boomerang includes primitives to do these operations
on keys. More generally, our basic design could also be extended so that keys are represented by richer structures—
e.g., strings, sets, and lists—and add combinators for transforming between different kinds of keys. For example,
the iteration combinator could return the list of keys of chunks instead of their flat concatenation, and this list could
be further transformed into a set, if order is not important,or concatenated into a string.

Many languages where transformations are bijective modulo“ignorable information”—e.g., whitespace and
minor formatting details—have been proposed. We are investigating the generalization of this idea to lenses in
the domain of strings. Theget andput functions may discard ignorable information, and the lens laws are only
required modulo the same information. As an example, we haveimplemented a variant of theconstlens whoseget
function produces a constant string, but whoseput function accepts a regular language. This variant is used inthe
SwissProt lens to indicate that whitespace occurring in XMLdocuments can be ignored.

We now turn the discussion to ongoing work concerning the efficiency of our implementation. Our Boomerang
interpreter is based on an NFA representation of finite automata. These are used to decide the side conditions
in the typing rules of dictionary lenses, and for operationssuch as splitting a string belonging to unambiguous
concatenations into unique substrings. The performance ofthis implementation is good enough for examples of
realistic size, but we would like to engineer an optimized implementation in the future. One possibility is to compile
regular expressions to DFAs using derivatives (Brzozowski1964). Although DFAs can be exponentially larger than
NFAs, string matching is much faster, and they can be constructed lazily. The main challenge is developing efficient
techniques for deciding non-ambiguity directly.

Another extension we would like to explore is streaming string lenses. This is motivated by large examples
such as SwissProt, where the size of the concrete string is onthe order of 1GB! We would like to develop a
variant of the iteration combinator whoseget function processes elements one at a time, rather than operating
on a string representing the whole sequence. Similarly, theput function would operate on elements of the abstract
string one at a time. Of course, theput function also needs a dictionary that, in the current design, represents the
entire concrete string. To optimize the memory requirements, we are also investigating an extension in which only
the minimum information needed to satisfy GETPUT is kept in skeletons and dictionaries. For example,copycould
produce a trivial skeleton rather than copying the entire string (which is ignored byput). Interestingly, these minimal
“complements” to thegetfunction, would result inparsefunctions that calculate the coarsest equivalence satisfying
PUTEQUIV. Thus, they may provide insights into semantic properties of lenses such as very well behavedness.

Semantics is another area of ongoing work. The EQUIVPUT law is stated with respect to an equivalence relation
on the concrete domain∼C . As observed, this equivalence arises naturally from a dictionary lens. Moreover,∼C

also induces an equivalence on the abstract codomain by taking the image of∼C underget. However, our lenses
do not guarantee that the induced equivalence is expressible solely in terms of chunks and keys in the abstract
codomain. We are investigating an extension of dictionary lenses that gives rise to an explicit equivalence on the

abstract codomain∼A. With such an equivalence in hand, we would then like to ensure that our lenses translate
equivalence-preserving updates to equivalence-preserving updates. The first step is to check that our lenses satisfy
the law

l.getc ∼A a′

∃c′.c ∼C c′ ∧ l.getc′ = a′
(EQUIVEXISTS)

which asserts, in the case where the equivalences are based on key-respecting reorderings of chunks, that every
reordering of chunks in an abstract string can be realized asa corresponding reordering of chunks in the concrete
domain. Combining this with EQUIVPUT, we can prove a derived rule

l.getc ∼A a′

l.puta′ c ∼C c
(GETPUTEQUIV)

which states that reorderings onA are, in fact, translated as reorderings onC.
Finally, we plan on investigating resourceful and quasi-oblivious lenses for trees, relations, and graphs.

Acknowledgments

We are grateful to Peter Buneman, Perdita Stevens, Stijn VanSummeren, Val Tannen, James Cheney, Ravi Chugh,
and the members of the Penn PLClub, CLunch, and Database Groups for stimulating discussions, and to Michael
Greenberg for helpful comments on an earlier draft of the paper. Our work is supported by the National Science
Foundation under grant IIS-0534592Linguistic Foundations for XML View Update. Nathan Foster is also supported
by an NSF Graduate Research Fellowship.

References
Artem Alimarine, Sjaak Smetsers, Arjen van Weelden, Marko van Eekelen, and Rinus Plasmeijer. There and back again:

Arrows for invertible programming. InACM SIGPLAN Workshop on Haskell, pages 86–97, 2005.

François Bancilhon and Nicolas Spyratos. Update semantics of relational views.ACM Transactions on Database Systems, 6
(4):557–575, December 1981.

Nick Benton. Embedded interpreters.Journal of Functional Programming, 15(4):503–542, 2005.

Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. 2005. Manuscript available fromhttp://
www-igm.univ-mlv.fr/~berstel/LivreCodes/.

Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C. Pierce.Relational lenses: A language for updateable views. In
Principles of Database Systems (PODS), 2006. Extended version available as University of Pennsylvania technical report
MS-CIS-05-27.

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual syntax for XML languages.Information Systems, 2007.
To appear. Extended abstract inDatabase Programming Languages (DBPL)2005.

Janusz A. Brzozowski. Derivatives of regular expressions.Journal of the ACM, 11(4):481–494, 1964.

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A characterization of data provenance. In
International Conference on Database Theory (ICDT), London, UK, volume 1973 ofLecture Notes in Computer Science,
pages 316–330. Springer, 2001.

Yingwei Cui and Jennifer Widom. Lineage tracing for generaldata warehouse transformations.VLDB Journal, 12(1):41–58,
2003.

Robert Ennals and David Gay. Multi-language synchronization. In European Symposium on Programming (ESOP), Braga,
Portugal, volume 4421 ofLecture Notes in Computer Science, pages 475–489. Springer-Verlag, 2007.

Kathleen Fisher and Robert Gruber. PADS: a domain-specific language for processing ad hoc data. InACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Chicago, IL, pages 295–304, 2005.

J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard, Benjamin C. Pierce, and Alan Schmitt. Exploiting schemas in
data synchronization.Journal of Computer and System Sciences, 73(4):669–689, June 2007a. Extended abstract inDatabase
Programming Languages (DBPL)2005.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. Combinators for bi-
directional tree transformations: A linguistic approach to the view update problem.ACM Transactions on Programming
Languages and Systems, 29(3):17, May 2007b. Extended abstract inPrinciples of Programming Languages(POPL), 2005.

Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor for developing structured documents based on
bi-directional transformations. InPartial Evaluation and Program Manipulation (PEPM), pages 178–189, 2004.

Shinya Kawanaka and Haruo Hosoya. bixid: a bidirectional transformation language for XML. InACM SIGPLAN International
Conference on Functional Programming (ICFP), Portland, Oregon, pages 201–214, 2006.

Andrew J. Kennedy. Functional pearl: Pickler combinators.Journal of Functional Programming, 14(6):727–739, 2004.

Lambert Meertens. Designing constraint maintainers for user interaction, 1998. Manuscript.

Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach to bi-directional updating. InASIAN Symposium
on Programming Languages and Systems (APLAS), pages 2–20, November 2004.

Benjamin C. Pierce et al. Harmony: A synchronization framework for heterogeneous tree-structured data, 2006.http://

www.seas.upenn.edu/~harmony/.

M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and Development, 3(2):
114–125, 1959.

Norman Ramsey. Embedding an interpreted language using higher-order functions and types. InACM SIGPLAN Workshop
on Interpreters, Virtual Machines and Emulators (IVME), San Diego, CA, pages 6–14, 2003.

Emmanuel Roche and Yves Schabes, editors.Finite-State Language Processing. MIT Press, 1996.

Perdita Stevens. Bidirectional model transformations in QVT: Semantic issues and open questions. InInternational Conference
on Model Driven Engineering Languages and Systems (MoDELS), Nashville, TN, volume 4735 ofLecture Notes in
Computer Science, pages 1–15. Springer-Verlag, 2007.

Naoshi Tabuchi, Eijiro Sumii, and Akinori Yonezawa. Regular expression types for strings in a text processing language. In
Workshop on Types in Programming (TIP), Dagstuhl, Germany, volume 75 ofElectronic Notes in Theoretical Computer
Science, pages 95–113, 2002.

A. Manual Lenses

In this appendix we entertain a heretical proposition—thatbidirectional languages might not be worth the trouble.
Might it not be simpler just to write theget and put components as separate functions in a general-purpose
programming language?6 To evaluate this proposition (and ultimately reject it), weconsider OCaml definitions
of thegetandput functions for the composers example from the introduction,and then step through the reasoning
needed to verify that they are total and obey the lens laws.

Theget function is written as follows:

let get c =

let comps_c = split ’\n’ c in

let comps_a = List.map

(fun ci ->

let [n;y;c] = split ’,’ ci in

join ’,’ [n;c])

comps_c in

join ’\n’ comps_a

It splits the input into a list of lines, maps a function over this list that retains the name and country from each line,
and joins the resulting list. The correspondingput function is:

let put a c =

let a_s,c_s = split ’\n’ a, split ’\n’ c in

6 Of course, there are many semantically valid lenses whosegetandput functions canonly be expressed in a general-purpose language—or,
equivalently, by adding new primitives to Boomerang. Whether or not our choice to focus on finite-state string transductions hits a “sweet
spot” between expressiveness and tractable reasoning is a different question—one whose answer will require more experience with additional
real-world examples.

let c_s_assoc = List.map

(fun ci -> let [n;y;c] = (split ’,’ ci) in (n,y))

c_s in

let cs’ = List.fold_left

(fun (acc, assoc) ai ->

let [n;c] = split ’,’ ai in

let yi = assoc_find n assoc " 0000-0000" in

let assoc’ = assoc_remove n assoc in

((join ’,’ [n;yi;c])::acc, assoc’))

([], c_s_assoc) a_s in

join ’\n’ (List.rev (fst cs’))

This splits the concrete and abstract arguments into lists of lines, and then constructs an association list from the
concrete list in which every name is paired with the corresponding year range. Next, it folds down the abstract list,
locates a year range from the association list (using a default when none is found), and concatenates the name, dates,
and nationality together. Finally, it joins the resulting list, yielding the new concrete view.

These two functions have the same behavior as the second lensfrom the introduction. To finish the job we need
to prove that each function is total and that the pair satisfies the lens laws. Demonstrating totality is not difficult,
although we need to say what type they are total at. They are not total functions on the set of all strings—e.g., when
get is applied to

"Jean\nSibelius, 1865-1957, Finnish"

neither line yields a list of length three when split by ‘,’ which triggers aMatch_failure exception. To prevent
such failures, we can wrap the bare functions with code that checks that the arguments match the regular expressions

[A-Za-z]+, [0-9]{4}-[0-9]{4}, [A-Za-z]+

and:

[A-Za-z]+, [A-Za-z]+

With this modification, checking totality is straightforward.
To verify the GETPUT law, we have to consider an arbitrary concrete string together with the unique abstract

string produced from it by theget function, and show that applyingput to these arguments yields the original
concrete string. We can do this in three steps. First, we check that the string obtained by joiningcomps_a produced
at the end ofget splits into the same list at the start ofput. Second, we check that each step of theList.fold_left

locates the correct year range for the composer. This requires a few additional steps of reasoning about the value
in theassoc accumulator as it is threaded through the fold (in particular, if the list contains repeated names, then
we must verify that the corresponding year ranges are restored positionally). Finally, we check that the order of
elements in the updated concrete list is the same as in the original concrete list. Checking PUTGET is similar but
simpler, since the year ranges produced byput do not matter—they are discarded byget. Checking EQUIVPUT is
also straightforward since theput function only uses the concrete string via the association list it constructs, and
every concrete list containing the same names and dates mapsto the same association list.

By contrast, the Boomerang version of the same lens (writtenhere with explicit regular expressions)

let comp = key [A-Za-z]+ . copy ", "

. del ([0-9]{4} . "-" . [0-9]{4} . ", ")

. copy [A-Za-z]+

let comps = "" | <comp> . ("\n" . <comp>)*

consists of a single phrase which is only a little more complicated than the regular expressions that we had to add
to the OCaml program to ensure totality. Moreover, types areinferred automatically, and well-typedness implies the
lens laws.

All this is nice. But thereal benefits of using a bidirectional language become apparent when the lens evolves.
Suppose that, for some reason, we decide that the character used to separate the fields in each line should be “!”.
Changing the Boomerang program requires two local changes—one for each occurrence of a",". Theget andput
functions and inferred types all change automatically. By contrast, the OCaml functions and regular expressions
have eight occurrences of “,”, and these are scattered across two functions and two regular expressions! Moreover,
the totality and lens law proofs must each be rechecked by hand. In particular, we need to verify that changing the
separator does not introduce an ambiguity that breaks the property thatsplit andjoin are inverses.

Of course, this change could have been made simpler by defining the separator as a constant. But now suppose
we need to change the concrete format to:

Jean Sibelius: 1865-1957, Finnish

The lens program only requires one change. The OCaml functions, however, require significant modifications
because a single invocation ofsplit for each line is no longer enough. Instead, we have to split each line by
“:”, and then again by “,”. Making this change requires touching several lines of code—and correspondingly deep
revisions to the proofs of totality and the lens laws. At thispoint, the urge to cut corners—make changes to the code
but skip fixing the proofs (if indeed they were written out in the first place)—will be strong.

Thus, even for this nearly trivial example, a bi-directional language is a much more attractive option. The low-
level, two-function approach is surprisingly difficult to get right in the first place and even more difficult to imagine
maintaining.

